CO<sub>2</sub> Capture by Cold Membrane Operation with Actual Power Plant Flue Gas

烟气 废物管理 工程类 捆绑 发电站 发电 环境科学 工艺工程 材料科学 功率(物理) 电气工程 物理 复合材料 量子力学
作者
Trapti Chaubey,S.S. Kulkarni,David Hasse,Alex Augustine
标识
DOI:10.2172/1373105
摘要

The main objective of the project was to develop a post-combustion CO2 capture process based on the hybrid cold temperature membrane operation. The CO2 in the flue gas from coal fired power plant is pre-concentrated to >60% CO2 in the first stage membrane operation followed by further liquefaction of permeate stream to achieve >99% CO2 purity. The aim of the project was based on DOE program goal of 90% CO2 capture with >95% CO2 purity from Pulverized Coal (PC) fired power plants with $40/tonne of carbon capture cost by 2025. The project moves the technology from TRL 4 to TRL 5. The project involved optimization of Air Liquide commercial 12" PI-1 bundle to improve the bundle productivity by >30% compared to the previous baseline (DE-FE0004278) using computational fluid dynamics (CFD) modeling and bundle testing with synthetic flue gas at 0.1 MWe bench scale skid located at Delaware Research and Technology Center (DRTC). In parallel, the next generation polyimide based novel PI-2 membrane was developed with 10 times CO2 permeance compared to the commercial PI-1 membrane. The novel PI-2 membrane was scaled from mini-permeator to 1" permeator and 1" bundle for testing. Bundle development was conducted with a Development Spin Unit (DSU) installed at MEDAL. Air Liquide's cold membrane technology was demonstrated with real coal fired flue gas at the National Carbon Capture Center (NCCC) with a 0.3 MWe field-test unit (FTU). The FTU was designed to incorporate testing of two PI-1 commercial membrane bundles (12" or 6" diameter) in parallel or series. A slip stream was sent to the next generation PI-2 membrane for testing with real flue gas. The system exceeded performance targets with stable PI-1 membrane operation for over 500 hours of single bundle, steady state testing. The 12" PI-1 bundle exceeded the productivity target by achieving ~600 Nm3/hr, where the target was set at ~455 Nm3/hr at 90% capture rate. The cost of 90% CO2 capture from a 550 MWe net coal power plant was estimated between 40 and $45/tonne. A 6" PI-1 bundle exhibited superior bundle performance compared to the 12" PI-1 bundle. However, the carbon capture cost was not lower with the 6" PI-1 bundle due to the higher bundle installed cost. A 1" PI-1 bundle was tested to compare bundles with different length / diameter ratios. This bundle exhibited the lowest performance due to the different fiber winding pattern and increased bundle non-ideality. Several long-term and parametric tests were conducted with 3,200 hours of total run-time at NCCC. Finally, the new PI-2 membrane fiber was tested at a small scale (1" modules) in real flue gas and exhibited up to 10 times the CO2 permeance and slightly lower CO2/N2 selectivity as the commercial PI-1 fiber. This corresponded to a projected 4 - 5 times increase in the productivity per bundle and a potential cost reduction of $3/tonne for CO2 capture, as compared with PI-1. An analytical campaign was conducted to trace different impurities such as NOx, mercury, Arsenic, Selenium in gas and liquid samples through the carbon capture system. An Environmental, Health and Safety (EH&S) analysis was completed to estimate emissions from a 550 MWe net power plant with carbon capture using cold membrane. A preliminary design and cost analysis was completed for 550 tpd (~25 MWe) plant to assess the capital investment and carbon capture cost for PI-1 and PI-2 membrane solutions from coal fired flue gas. A comparison was made with an amine based solution with significant cost advantage for the membrane at this scale. Additional preliminary design and cost analysis was completed between coal, natural gas and SMR flue gas for carbon capture at 550 tpd (~25 MWe) plant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SSS完成签到,获得积分10
1秒前
六妜完成签到,获得积分10
1秒前
小小王发布了新的文献求助10
1秒前
1秒前
2秒前
文静翅膀发布了新的文献求助10
2秒前
雪白的豌豆完成签到,获得积分10
3秒前
3秒前
米修发布了新的文献求助10
3秒前
3秒前
3秒前
张emo发布了新的文献求助10
4秒前
4秒前
追寻电脑发布了新的文献求助10
5秒前
5秒前
姜小白完成签到,获得积分10
5秒前
6秒前
星辰大海应助扶桑采纳,获得10
6秒前
向语堂发布了新的文献求助10
7秒前
7秒前
谦让新竹发布了新的文献求助10
7秒前
8秒前
8秒前
Owen应助mjlv采纳,获得10
8秒前
9秒前
小二郎应助小杰采纳,获得10
9秒前
龙龙ff11_发布了新的文献求助10
9秒前
9秒前
9秒前
张WT发布了新的文献求助10
10秒前
10秒前
英姑应助迷路的虔采纳,获得10
10秒前
10秒前
11秒前
11秒前
紫不语完成签到,获得积分10
11秒前
12秒前
Theone发布了新的文献求助10
12秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817895
求助须知:如何正确求助?哪些是违规求助? 3361040
关于积分的说明 10411279
捐赠科研通 3079283
什么是DOI,文献DOI怎么找? 1691132
邀请新用户注册赠送积分活动 814348
科研通“疑难数据库(出版商)”最低求助积分说明 768086