A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal

计算机科学 人工智能 模式识别(心理学) 隐马尔可夫模型 人工神经网络 多导睡眠图 深度学习 特征(语言学) 支持向量机 睡眠呼吸暂停 特征提取 机器学习 语音识别 呼吸暂停 医学 心脏病学 哲学 精神科 语言学
作者
Kunyang Li,Weifeng Pan,Yifan Li,Qing Jiang,Guanzheng Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:294: 94-101 被引量:202
标识
DOI:10.1016/j.neucom.2018.03.011
摘要

Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder that potentially threatened people's cardiovascular system. As an alternative to polysomnography for OSA detection, ECG-based methods have been developed for several years. However, previous work is focused on feature engineering, which is highly dependent on the prior knowledge of human experts and maybe subjective. Moreover, feature engineering also highlights the prominent shortcoming of current learning algorithms that the features are unable to extracted and organized from the data. In this study, we proposed a method to detect OSA based on deep neural network and Hidden Markov model (HMM) using single-lead ECG signal. The method utilized sparse auto-encoder to learn features, which belongs to unsupervised learning that only requires unlabeled ECG signals. Two types classifiers (SVM and ANN) are used to classify the features extracted from the sparse auto-encoder. Considering the temporal dependency, HMM was adopted to improve the classification accuracy. Finally, a decision fusion method is adopted to improve the classification performance. About 85% classification accuracy is achieved in the per-segment OSA detection, and the sensitivity is up to 88.9%. Based on the results of per-segment OSA detection, we perfectly separate the OSA recording from normal with accuracy of 100%. Experimental results demonstrated that our proposed method is reliable for OSA detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机智羞花完成签到,获得积分10
刚刚
鸡毛完成签到,获得积分10
1秒前
科研通AI6应助hui采纳,获得30
1秒前
小白完成签到,获得积分10
1秒前
1秒前
tuzi完成签到,获得积分0
1秒前
韵动崖谷给韵动崖谷的求助进行了留言
1秒前
慕青应助槐椟采纳,获得10
1秒前
bkagyin应助guozizi采纳,获得50
3秒前
4秒前
4秒前
激动的新筠完成签到,获得积分10
4秒前
istudy完成签到,获得积分10
4秒前
4秒前
科研通AI6应助鸡毛采纳,获得30
4秒前
SciGPT应助顺顺尼采纳,获得10
4秒前
5秒前
本是个江湖散人完成签到,获得积分10
6秒前
科研通AI2S应助Zhjie126采纳,获得10
6秒前
西西里柠檬完成签到,获得积分10
7秒前
洪云峰发布了新的文献求助10
7秒前
科研通AI5应助妮妮采纳,获得10
7秒前
zhang完成签到,获得积分10
7秒前
浮游应助狂野台灯采纳,获得10
8秒前
受伤书文完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
peng发布了新的文献求助10
10秒前
冰糖葫芦娃完成签到,获得积分10
10秒前
keyan_zhou发布了新的文献求助10
11秒前
11秒前
小李发布了新的文献求助20
14秒前
14秒前
小芦铃发布了新的文献求助10
15秒前
SciGPT应助满意的聋五采纳,获得10
15秒前
alison应助一瓶水采纳,获得10
16秒前
16秒前
JamesPei应助轻松的芯采纳,获得10
16秒前
orixero应助欠虐宝宝采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921428
求助须知:如何正确求助?哪些是违规求助? 4192669
关于积分的说明 13022629
捐赠科研通 3964015
什么是DOI,文献DOI怎么找? 2172808
邀请新用户注册赠送积分活动 1190454
关于科研通互助平台的介绍 1099651