InMAP: A model for air pollution interventions

空气质量指数 空气污染 人口 环境科学 污染 网格 心理干预 计算机科学 气象学 环境卫生 数学 地理 生态学 医学 精神科 几何学 生物
作者
Christopher W. Tessum,Jason Hill,Julian Marshall
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:12 (4): e0176131-e0176131 被引量:208
标识
DOI:10.1371/journal.pone.0176131
摘要

Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations-the air pollution outcome generally causing the largest monetized health damages-attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水门发布了新的文献求助30
1秒前
大模型应助66wudi采纳,获得10
2秒前
2秒前
沉静茗完成签到,获得积分10
3秒前
咸鱼完成签到,获得积分10
4秒前
Lucas应助绝望核弹采纳,获得10
4秒前
5秒前
hanzhipad举报22222求助涉嫌违规
5秒前
6秒前
7秒前
杨家乐关注了科研通微信公众号
8秒前
受伤翠容发布了新的文献求助30
9秒前
木炭完成签到,获得积分10
10秒前
Alessnndre发布了新的文献求助10
10秒前
10秒前
12秒前
灵巧的蝴蝶完成签到 ,获得积分10
12秒前
受伤翠容完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
16秒前
大个应助1.1采纳,获得10
16秒前
TaoJ发布了新的文献求助10
17秒前
17秒前
believe发布了新的文献求助20
17秒前
18秒前
19秒前
20秒前
20秒前
20秒前
20秒前
旺仔牛奶完成签到,获得积分10
21秒前
SciGPT应助lelele采纳,获得10
21秒前
22秒前
绝望核弹发布了新的文献求助10
23秒前
23秒前
zcious发布了新的文献求助10
23秒前
旺仔牛奶发布了新的文献求助30
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843574
求助须知:如何正确求助?哪些是违规求助? 3385883
关于积分的说明 10542869
捐赠科研通 3106677
什么是DOI,文献DOI怎么找? 1711032
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380