协方差矩阵
协方差矩阵的估计
协方差交集
CMA-ES公司
协方差函数
协方差
协方差函数
高光谱成像
有理二次协方差函数
基质(化学分析)
算法
散射矩阵
计算机科学
人工智能
数学
总协方差定律
模式识别(心理学)
统计
化学
色谱法
作者
Ilan Schvartzman,Shimrit Maman,Dan G. Blumberg,Stanley R. Rotman
标识
DOI:10.1109/icsee.2016.7806135
摘要
In many image processing applications, the estimation of the covariance matrix is considered an essential step. Estimating the covariance matrix has a great influence on the success or failure of a given algorithm. Usually the covariance matrix is estimated by the sampled covariance matrix of the whole data. The problem with doing so is that anomalies that exist in the data might distort the covariance matrix. This paper presents an approach for covariance matrix estimation that is less prone to anomalies and improves the detection rate. Results on simulations and real life images are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI