亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fatigue Life and Reliability of Steel Castings through Integrated Simulations and Experiments

可靠性(半导体) 铸造 材料科学 模具 使用寿命 压力(语言学) 稳健性 可靠性工程 计算机科学 结构工程 机械工程 复合材料 工程类 量子力学 语言学 程序设计语言 哲学 功率(物理) 物理
作者
Muhammad Azhar Ali Khan,Anwar Khalil Sheikh,Zuhair M. Gasem,Muhammad Asad
出处
期刊:Metals [MDPI AG]
卷期号:12 (2): 339-339 被引量:5
标识
DOI:10.3390/met12020339
摘要

The quality and performance of steel castings is always a concern due to porosities formed during solidification of the melt. Nowadays, computational tools are playing a pivotal role in analyzing such defects, followed by their minimization through mold design optimization. Even if the castings are produced with defects in a permissible range, it is important to examine their service life and performance with those defects in a virtual domain using simulation software. This paper aims to develop a methodology with a similar idea of simulation-based optimization of mold design and predictions of life and reliability of components manufactured with minimized casting defects, especially porosities. The cast parts are standard fatigue specimens which are produced through an optimized multi-cavity mold. X-ray imaging is done to determine the soundness of cast parts. Experimental work includes load-controlled fatigue testing under fully reversed condition. The fatigue life of specimens is also simulated and compared with the experimental results. The classical strength-stress model is used to determine the reliability of cast parts through which a safe-load induced stress of steel castings is determined. Finally, probability distributions are fit to the reliability results to develop the reliability models. It is found that porosities can be minimized significantly in the mold design phase using casting simulations. Nevertheless, some porosities are bound to exist, which must be included in realistic estimation of fatigue life and reliability of cast parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助无情的琳采纳,获得10
4秒前
4秒前
6秒前
13秒前
三心草完成签到 ,获得积分10
17秒前
26秒前
33秒前
36秒前
无情的琳发布了新的文献求助10
37秒前
41秒前
1分钟前
sidashu发布了新的文献求助10
1分钟前
852应助无情的琳采纳,获得10
1分钟前
静静完成签到 ,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
1分钟前
2分钟前
Dannnn完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Bob发布了新的文献求助10
2分钟前
2分钟前
无情的琳发布了新的文献求助10
2分钟前
2分钟前
么西么西发布了新的文献求助10
2分钟前
2分钟前
傻傻的哈密瓜完成签到,获得积分10
2分钟前
2分钟前
WQ完成签到,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
3分钟前
牛八先生完成签到,获得积分10
3分钟前
天天发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724088
求助须知:如何正确求助?哪些是违规求助? 5284344
关于积分的说明 15299562
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616703
邀请新用户注册赠送积分活动 1566595
关于科研通互助平台的介绍 1523430