Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Knee

射线照相术 单室膝关节置换术 植入 医学 关节置换术 接收机工作特性 深度学习 口腔正畸科 算法 人工智能 外科 骨关节炎 计算机科学 内科学 病理 替代医学
作者
Jaret M. Karnuta,Bryan C. Luu,Alexander Roth,Heather S. Haeberle,Antonia F. Chen,Richard Iorio,Jonathan L. Schaffer,Michael A. Mont,Brendan M. Patterson,Viktor E. Krebs,Prem N. Ramkumar
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:36 (3): 935-940 被引量:65
标识
DOI:10.1016/j.arth.2020.10.021
摘要

Background Revisions and reoperations for patients who have undergone total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), and distal femoral replacement (DFR) necessitates accurate identification of implant manufacturer and model. Failure risks delays in care, increased morbidity, and further financial burden. Deep learning permits automated image processing to mitigate the challenges behind expeditious, cost-effective preoperative planning. Our aim was to investigate whether a deep-learning algorithm could accurately identify the manufacturer and model of arthroplasty implants about the knee from plain radiographs. Methods We trained, validated, and externally tested a deep-learning algorithm to classify knee arthroplasty implants from one of 9 different implant models from retrospectively collected anterior-posterior (AP) plain radiographs from four sites in one quaternary referral health system. The performance was evaluated by calculating the area under the receiver-operating characteristic curve (AUC), sensitivity, specificity, and accuracy when compared with a reference standard of implant model from operative reports. Results The training and validation data sets were comprised of 682 radiographs across 424 patients and included a wide range of TKAs from the four leading implant manufacturers. After 1000 training epochs by the deep-learning algorithm, the model discriminated nine implant models with an AUC of 0.99, accuracy 99%, sensitivity of 95%, and specificity of 99% in the external-testing data set of 74 radiographs. Conclusions A deep learning algorithm using plain radiographs differentiated between 9 unique knee arthroplasty implants from four manufacturers with near-perfect accuracy. The iterative capability of the algorithm allows for scalable expansion of implant discriminations and represents an opportunity in delivering cost-effective care for revision arthroplasty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼蹇完成签到,获得积分10
刚刚
yjy完成签到 ,获得积分10
2秒前
谢佩奇发布了新的文献求助10
3秒前
John完成签到 ,获得积分10
4秒前
shen完成签到,获得积分10
4秒前
科研菜菜完成签到,获得积分10
4秒前
XD824发布了新的文献求助10
5秒前
5秒前
甘sir完成签到 ,获得积分10
5秒前
7秒前
冲冲冲完成签到,获得积分10
8秒前
白色蒲公英完成签到,获得积分10
8秒前
nandou完成签到,获得积分10
9秒前
嵇南露完成签到,获得积分10
10秒前
CodeCraft应助飞在天空的风采纳,获得10
10秒前
kk119完成签到,获得积分10
10秒前
汉堡包应助梅雨季来信采纳,获得10
11秒前
11秒前
阿都发布了新的文献求助10
11秒前
queen814完成签到,获得积分10
11秒前
温婉的勒完成签到,获得积分10
12秒前
彭a完成签到,获得积分10
12秒前
LLL完成签到,获得积分10
12秒前
leo完成签到,获得积分10
13秒前
机灵含巧发布了新的文献求助20
13秒前
风趣的小甜瓜完成签到,获得积分10
14秒前
独特的谷雪完成签到,获得积分10
14秒前
licheng完成签到,获得积分10
14秒前
希望天下0贩的0应助728采纳,获得10
14秒前
15秒前
15秒前
SciGPT应助胡大嘴先生采纳,获得10
16秒前
hustscholar完成签到,获得积分10
18秒前
漂泊1991完成签到,获得积分10
18秒前
白桃乌龙完成签到,获得积分10
19秒前
bzc229完成签到,获得积分10
19秒前
秀丽的依云完成签到 ,获得积分10
19秒前
CipherSage应助LLL采纳,获得10
20秒前
21秒前
芝麻完成签到,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815945
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402728
捐赠科研通 3077293
什么是DOI,文献DOI怎么找? 1690285
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743