Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation

化学 酰化 水解酶 降级(电信) 水解 乙烯 角质酶 催化作用 有机化学 计算机科学 电信
作者
Xiaoqian Chen,Zhiyong Guo,Lei Wang,Zheng‐Fei Yan,Chang-Xu Jin,Qingsong Huang,Demin Kong,Deming Rao,Jing Wu
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:433: 128816-128816 被引量:52
标识
DOI:10.1016/j.jhazmat.2022.128816
摘要

Poly (ethylene terephthalate) (PET) is a widely used type of general plastic that produces a significant amount of waste due to its non-degradable properties. We propose a novel directional-path modification (DPM) strategy, involving positive charge amino acid introduction and binding groove remodeling, and apply it to Thermobifida fusca cutinase to enhance PET degradation. The highest value of PET degradation (90%) was achieved in variant 4Mz (H184S/Q92G/F209I/I213K), exhibiting values almost 30-fold that of the wild-type. We employed molecular docking, molecular dynamics simulations, and QM/MM MD for the degradation process of PET, accompanied by acylation and deacylation. We found that the distance of nucleophilic attack was reduced from about 4.6 Å in the wild type to 3.8 Å in 4Mz, and the free energy barrier of 4Mz dropped from 14.3 kcal/mol to 7.1 kcal/mol at the acylation which was the rate-limiting step. Subsequently, the high efficiency and universality of the DPM strategy were successfully demonstrated in LCC, Est119, and BhrPETase enhancing the degradation activity of PET. Finally, the highest degradation rate of the pretreated commercial plastic bottles had reached to 73%. The present study provides insight into the molecular binding mechanism of PET into the PET hydrolases structure and proposes a novel DPM strategy that will be useful for the engineering of more efficient enzymes for PET degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿呆完成签到,获得积分20
刚刚
三里墩头发布了新的文献求助20
1秒前
脑洞疼应助搞怪玩家采纳,获得10
1秒前
1秒前
研友_LXjjOZ发布了新的文献求助10
1秒前
云离发布了新的文献求助10
2秒前
冰水完成签到,获得积分10
2秒前
ellieou完成签到,获得积分10
2秒前
2秒前
圈圈发布了新的文献求助10
3秒前
CipherSage应助MoCh采纳,获得10
3秒前
5秒前
5秒前
ding应助喜悦采纳,获得10
5秒前
qwdqw完成签到,获得积分10
5秒前
6秒前
xmefw完成签到,获得积分20
6秒前
ZhenpuWang完成签到,获得积分10
6秒前
比巴卜完成签到,获得积分10
7秒前
quentin发布了新的文献求助10
7秒前
善学以致用应助ting采纳,获得10
7秒前
liu完成签到,获得积分20
7秒前
123发布了新的文献求助10
7秒前
7秒前
wwwwww完成签到,获得积分20
7秒前
8秒前
e746700020完成签到,获得积分10
9秒前
9秒前
9秒前
领导范儿应助SZY采纳,获得10
9秒前
结实的元灵完成签到,获得积分10
10秒前
大兵哥发布了新的文献求助10
10秒前
丁sir完成签到,获得积分10
10秒前
10秒前
如果完成签到,获得积分10
10秒前
10秒前
10秒前
比巴卜发布了新的文献求助10
10秒前
钼yanghua发布了新的文献求助10
10秒前
Alina1874发布了新的文献求助10
11秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588