计算机科学
人工智能
模式识别(心理学)
特征(语言学)
分割
代表(政治)
领域(数学分析)
特征学习
鉴别器
特征提取
数学
数学分析
电信
哲学
语言学
探测器
政治
政治学
法学
作者
Jing Li,Kang Zhou,Shenhan Qian,Wen Li,Lixin Duan,Shenghua Gao
标识
DOI:10.1109/tpami.2022.3154933
摘要
This paper presents a novel unsupervised domain adaptation method for semantic segmentation. We argue that a good representation of the target-domain data should keep both the knowledge from the source domain and the target-domain-specific information. To obtain the knowledge from the source domain, we first learn a set of bases to characterize the feature distribution of the source domain, then features from both the source and the target domain are re-represented as a weighted summation of the source bases. A discriminator is additionally introduced to make the re-representation responsibilities of both domain features under the same bases indistinguishable. In this way, the domain gap between the source re-representation and target re-representation is minimized, and the re-represented target domain features contain the source domain information. Then we combine the feature re-representation with the original domain-specific feature together for subsequent pixel-wise classification. To further make the re-represented target features semantically meaningful, a Reliable Pseudo Label Retraining (RPLR) strategy is proposed, which utilizes the consistency of the prediction by the networks trained with multi-view source images to select the clean pseudo labels on unlabeled target images for re-training. Extensive experiments demonstrate the competitive performance of our approach for unsupervised domain adaptation on the semantic segmentation benchmarks.
科研通智能强力驱动
Strongly Powered by AbleSci AI