Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network

外推法 计算机科学 图形 相关性 时态数据库 注意力网络 模式识别(心理学) 生物系统 人工智能 数据挖掘 数学 理论计算机科学 统计 几何学 生物
作者
Lei Cheng,Li Li,Sai Li,Shaolin Ran,Ze Zhang,Yong Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 116944-116944 被引量:39
标识
DOI:10.1016/j.eswa.2022.116944
摘要

Accurate prediction of gas concentration is of great importance in many safe-based systems and applications. However, prediction accuracy of gas concentration is limited by not only the temporal evolution of gas concentration but also the spatial characteristics of gas dispersion. To capture the spatial and temporal dependences simultaneously, an evolutionary attention-based temporal graph convolutional network (EAT-GCN) is proposed, which has three outstanding features: (1) graph convolutional network (GCN) is used to capture spatial dependence by learning topological structures of a gas sensor network; (2) gated recurrent unit (GRU) is adopted to retain temporal dependence by learning dynamic changes of gas concentration, and (3) evolutionary attention is introduced to improve the ability of GRU to pay different degrees of attention to the sub-window features within multiple time steps. Finally, kernel extrapolation distribution mapping algorithm is employed to visualize the predicted results of gas concentration and update the gas distribution map. Compared with CNN, GCN, GRU, T-GCN, A3T-GCN and EA-GRU models, the proposed EAT-GCN model improves the prediction accuracy by 13.46%, 124.21%, 33.92%, 23.39%, 46.63%, and 23.97%, respectively. Experiments demonstrate that the designed model captures spatiotemporal correlation from gas concentration data and achieves better prediction accuracy than state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tsuki发布了新的文献求助10
1秒前
carryxu完成签到,获得积分10
1秒前
哈牛柚子鹿完成签到,获得积分10
1秒前
3秒前
whhhhh完成签到,获得积分20
3秒前
3秒前
顾矜应助2023204306324采纳,获得10
3秒前
梁伟鑫完成签到 ,获得积分10
4秒前
JamesPei应助七天与采纳,获得10
5秒前
烟花应助ivying0209采纳,获得10
6秒前
樊书雪发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
10秒前
热心网友发布了新的文献求助10
10秒前
10秒前
yeu103325关注了科研通微信公众号
11秒前
洁净雁菱发布了新的文献求助10
11秒前
吕致远发布了新的文献求助10
12秒前
郭郭郭发布了新的文献求助10
12秒前
YH发布了新的文献求助10
13秒前
Uranus发布了新的文献求助30
13秒前
13秒前
少少少完成签到,获得积分10
13秒前
加油努力完成签到 ,获得积分10
13秒前
14秒前
莴苣发布了新的文献求助10
14秒前
自觉汽车完成签到,获得积分10
15秒前
16秒前
17秒前
魔幻海豚发布了新的文献求助10
17秒前
科研通AI5应助小程同学采纳,获得10
17秒前
oo完成签到,获得积分10
17秒前
aprise完成签到 ,获得积分10
17秒前
Rylee发布了新的文献求助10
18秒前
大大小完成签到,获得积分10
20秒前
星辰大海应助Jackie采纳,获得10
20秒前
ding应助小新采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564189
求助须知:如何正确求助?哪些是违规求助? 3988422
关于积分的说明 12350103
捐赠科研通 3659517
什么是DOI,文献DOI怎么找? 2016679
邀请新用户注册赠送积分活动 1051099
科研通“疑难数据库(出版商)”最低求助积分说明 938909