已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BDCNet: multi-classification convolutional neural network model for classification of COVID-19, pneumonia, and lung cancer from chest radiographs

卷积神经网络 肺炎 医学 人工智能 2019年冠状病毒病(COVID-19) 深度学习 肺癌 精确性和召回率 射线照相术 阶段(地层学) 计算机科学 放射科 机器学习
作者
Hassaan Malik,Tayyaba Anees,None Mui-zzud-din
出处
期刊:Multimedia Systems [Springer Science+Business Media]
标识
DOI:10.1007/s00530-021-00878-3
摘要

Globally, coronavirus disease (COVID-19) has badly affected the medical system and economy. Sometimes, the deadly COVID-19 has the same symptoms as other chest diseases such as pneumonia and lungs cancer and can mislead the doctors in diagnosing coronavirus. Frontline doctors and researchers are working assiduously in finding the rapid and automatic process for the detection of COVID-19 at the initial stage, to save human lives. However, the clinical diagnosis of COVID-19 is highly subjective and variable. The objective of this study is to implement a multi-classification algorithm based on deep learning (DL) model for identifying the COVID-19, pneumonia, and lung cancer diseases from chest radiographs. In the present study, we have proposed a model with the combination of Vgg-19 and convolutional neural networks (CNN) named BDCNet and applied it on different publically available benchmark databases to diagnose the COVID-19 and other chest tract diseases. To the best of our knowledge, this is the first study to diagnose the three chest diseases in a single deep learning model. We also computed and compared the classification accuracy of our proposed model with four well-known pre-trained models such as ResNet-50, Vgg-16, Vgg-19, and inception v3. Our proposed model achieved an AUC of 0.9833 (with an accuracy of 99.10%, a recall of 98.31%, a precision of 99.9%, and an f1-score of 99.09%) in classifying the different chest diseases. Moreover, CNN-based pre-trained models VGG-16, VGG-19, ResNet-50, and Inception-v3 achieved an accuracy of classifying multi-diseases are 97.35%, 97.14%, 97.15%, and 95.10%, respectively. The results revealed that our proposed model produced a remarkable performance as compared to its competitor approaches, thus providing significant assistance to diagnostic radiographers and health experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助魏伯安采纳,获得10
刚刚
研友_ZAyNjZ发布了新的文献求助10
刚刚
CipherSage应助lyy采纳,获得10
2秒前
漠尘完成签到,获得积分10
2秒前
我是我完成签到,获得积分20
6秒前
guanyu108发布了新的文献求助30
7秒前
Astar完成签到,获得积分20
7秒前
8秒前
9秒前
QQ星完成签到,获得积分10
10秒前
QQ星发布了新的文献求助10
13秒前
沉静的时光完成签到 ,获得积分10
14秒前
14秒前
15秒前
阿力完成签到 ,获得积分10
18秒前
林肯冷酷发布了新的文献求助10
21秒前
21秒前
科研狗发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
酷炫橘子完成签到,获得积分10
23秒前
23秒前
风清扬发布了新的文献求助10
24秒前
快乐的青柏应助QQ星采纳,获得20
25秒前
六初完成签到 ,获得积分10
27秒前
小耗子完成签到,获得积分10
27秒前
Owen应助only采纳,获得10
29秒前
竹筏过海应助缓慢思枫采纳,获得30
29秒前
29秒前
29秒前
搞怪远侵完成签到,获得积分10
29秒前
32秒前
欣喜怜南完成签到 ,获得积分0
33秒前
归海一刀完成签到,获得积分10
33秒前
hvivi6发布了新的文献求助10
34秒前
36秒前
Pixie完成签到 ,获得积分10
37秒前
DJHKFD发布了新的文献求助10
37秒前
传奇3应助Ali采纳,获得30
37秒前
38秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885635
求助须知:如何正确求助?哪些是违规求助? 3427698
关于积分的说明 10756506
捐赠科研通 3152654
什么是DOI,文献DOI怎么找? 1740435
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785254