致癌物
DNA损伤
代谢组学
代谢物
生理学
遗传毒性
化学
生物
药理学
医学
毒性
生物化学
内科学
DNA
生物信息学
作者
Jiayu Xu,Yu Liu,Qiaojian Zhang,Zekang Su,Tenglong Yan,Shupei Zhou,Tiancheng Wang,Xuetao Wei,Zhangjian Chen,Guiping Hu,Tian Chen,Guang Jia
标识
DOI:10.1016/j.envpol.2021.118763
摘要
Outdoor air pollution has been classified as carcinogenic to humans (Group 1) for lung cancer, but the underlying mechanism and key toxic components remain incompletely understood. Since DNA damage and metabolite alterations are associated with cancer progression, exploring potential mechanisms linking air pollution and cancer might be meaningful. In this study, a real-time ambient air exposure system was established to simulate the real-world environment of adult male SD rats in Beijing from June 13th, 2018, to October 8th, 2018. 8-OHdG in the urine, γ-H2AX in the lungs and mtDNA copy number in the peripheral blood were analyzed to explore DNA damage at different levels. Serum non-targeted metabolomics analysis was performed. Pair-wise spearman was used to explore the correlation between DNA damage biomarkers and serum differential metabolites. Carcinogenic risks of heavy metals and PAHs via inhalation were assessed according to US EPA guidelines. Results showed that PM2.5 and O3 were the major air pollutants in the exposure group and not detected in the control group. Compared with control group, higher levels of 8-OHdG, mtDNA copy number, γ-H2AX and PCNA-positive nuclei cells were observed in the exposure group. Histopathological evaluation suggested ambient air induced alveolar wall thickening and inflammatory cell infiltration in lungs. Perturbed metabolic pathways identified included glycolysis/gluconeogenesis metabolism, purine and pyrimidine metabolism, etc. γ-H2AX was positively correlated with serum ADP, 3-phospho-D-glyceroyl phosphate and N-acetyl-D-glucosamine. The BaPeq was 0.120 ng/m3. Risks of Cr(VI), As, V, BaP, BaA and BbF were above 1 × 10-6. We concluded that low-level air pollution was associated with DNA damage and serum metabolomic alterations in rats. Cr(VI) and BaP were identified as key carcinogenic components in PM2.5. Our results provided experimental evidence for hazard identification and risk assessment of low-level air pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI