适体
清脆的
核酸
电化学发光
生物传感器
DNA
滚动圆复制
化学
分子信标
计算生物学
检出限
寡核苷酸
组合化学
纳米技术
分子生物学
生物
材料科学
生物化学
聚合酶
基因
色谱法
作者
Mei‐Ling Liu,Yi Li,Mei-Ling Zhao,Ying Zhuo,H Xiaojing
标识
DOI:10.1016/j.bios.2022.114512
摘要
Considering the trans-cleavage capabilities, high-specificity and programmability, the CRISPR-Cas system has been recognized as a valuable platform to develop the next-generation diagnostic biosensors. However, due to the natural interaction with nucleic acids, current CRISPR-Cas-based detection mostly applies in nucleic acid analysis rather than non-nucleic acid analysis. By virtue of spherical nucleic acids (SNAs) with programmability and specificity, the Y-shaped DNA nanostructures assembled-SNAs (Y-SNAs) were rationally designed as target converters to achieve the quantitative activation of CRISPR-Cas12a, enabling a highly specific and sensitive electrochemiluminescence (ECL) determination of alpha-methylacyl-CoA racemase (AMACR), a high specific protein biomarker of prostate cancer. Significantly, the Y-shaped DNA nanostructures comprised of assisted DNA (A1), AMACR aptamer and DNA activator of CRISPR-Cas12a were loaded on Au nanoparticles modified Fe3O4 magnetic beads (Au@Fe3O4 MBs) to construct the robust Y-SNAs. In the presence of the target AMACR, the Y-SNAs as target converters could achieve quantitative activation of CRISPR-Cas12a by outputting the DNA activators with a linear relationship to the target. The amplified ECL signals were triggered by the release of the ferrocene-labeled quenching probes (QPs) on the electrode surface due to the trans-cleavage activity of CRISPR-Cas12a, thereby realizing the sensitive ECL determination of AMACR from 10 ng/mL to 100 μg/mL with the detection limit of 1.25 ng/mL. In general, this approach provides novel perspectives on how to design a universal ECL platform of the CRISPR-Cas system to detect the non-nucleic acid targets beyond the traditional methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI