A platinum nanourchin-based multi-enzymatic platform to disrupt mitochondrial function assisted by modulating the intracellular H2O2 homeostasis

细胞内 活性氧 过氧化氢酶 化学 肿瘤微环境 葡萄糖氧化酶 线粒体 平衡 过氧化氢 内生 生物物理学 细胞生物学 生物化学 癌症研究 生物 肿瘤细胞
作者
Jiansen Huang,Yongcan Li,Lei Zhang,Jie Wang,Zhigang Xu,Yuejun Kang,Peng Xue
出处
期刊:Biomaterials [Elsevier BV]
卷期号:286: 121572-121572 被引量:21
标识
DOI:10.1016/j.biomaterials.2022.121572
摘要

Endogenous H2O2 sacrifices for diversified therapeutic reactions against tumor. However, the treatment outcome is not always satisfactory owing to the unsustainable H2O2 supply from tumor microenvironment (TME). Herein, a platinum (Pt) nanourchin-based multi-enzymatic platform (referred to PGMA) is established by surface conjugation of glucose oxidase (GOx) capped with manganese carbonyl (MnCO) and loading 3-amino-1,2,4-triazole (3-AT). The mild acidic and H2O2-rich TME can render the degradation of MnCO, followed by triggering the release of CO gas, 3-AT and Mn2+/3+. The resultant GOx exposure initiates intratumoral glucose depletion, which is promoted by the O2 replenishment through Pt-catalyzed decomposition of H2O2. Meanwhile, intracellular reactive oxygen species (ROS) level is elevated through Mn2+/3+ couple-mediated Fenton-like reaction. Hence, CO release-initiated gas therapy, glucose exhaustion-induced tumor starvation and ROS-triggered chemodynamic therapy are committed to realizing a combinatorial disruption effect on mitochondrial function. Importantly, the released 3-AT can inhibit the activity of endogenous catalase, which effectively elevates the intracellular H2O2 level to compensate its consumption and provides incremental reactant for cascade utilizations. Taken together, this study aims to emphasize the importance of intracellular H2O2 balance during H2O2-depleted therapeutic process, and affords a prime paradigm of applying this strategy for tumor treatment via mitochondrial dysfunction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MISA完成签到 ,获得积分10
刚刚
精明的宛亦完成签到,获得积分10
2秒前
3秒前
3秒前
Ava应助科科采纳,获得30
4秒前
谢小盟应助光亮的曼青采纳,获得10
7秒前
7秒前
诗和远方完成签到,获得积分20
9秒前
失眠夏山完成签到,获得积分10
9秒前
甜甜甜完成签到 ,获得积分10
9秒前
ww完成签到,获得积分10
10秒前
游元稔发布了新的文献求助10
13秒前
机灵安白完成签到,获得积分10
13秒前
13秒前
HL完成签到,获得积分10
13秒前
周诗琪发布了新的文献求助10
15秒前
16秒前
SciGPT应助梁海萍采纳,获得10
18秒前
Dr_Fang发布了新的文献求助10
18秒前
淡淡的向雁完成签到,获得积分10
19秒前
赘婿应助Timber采纳,获得30
19秒前
孙燕应助科研通管家采纳,获得10
24秒前
孙燕应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
打卡下班应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
25秒前
桐桐应助科研通管家采纳,获得30
25秒前
打卡下班应助科研通管家采纳,获得10
25秒前
孙燕应助科研通管家采纳,获得10
25秒前
打卡下班应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
27秒前
28秒前
Dr_Fang完成签到,获得积分10
30秒前
迷人的高烽完成签到,获得积分20
30秒前
平淡的中心完成签到,获得积分10
31秒前
盼不热夏完成签到,获得积分10
31秒前
小夏发布了新的文献求助10
33秒前
活力的小猫咪完成签到 ,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947