A prognostic model using the neutrophil-albumin ratio and PG-SGA to predict overall survival in advanced palliative lung cancer

列线图 医学 比例危险模型 内科学 队列 肺癌 肿瘤科 缓和医疗 生存分析 回顾性队列研究 接收机工作特性 曲线下面积 多元分析 护理部
作者
Chang-Yan Feng,Huiqing Yu,Haike Lei,Haoyang Cao,Mengting Chen,Shihong Liu
出处
期刊:BMC Palliative Care [BioMed Central]
卷期号:21 (1) 被引量:5
标识
DOI:10.1186/s12904-022-00972-x
摘要

Abstract Objective Inflammation and malnutrition are common in patients with advanced lung cancer undergoing palliative care, and their survival time is limited. In this study, we created a prognostic model using the Inflam-Nutri score to predict the survival of these patients. Methods A retrospective cohort study was conducted on 223 patients with advanced, histologically confirmed unresectable lung cancer treated between January 2017 and December 2018. The cutoff values of the neutrophil-albumin ratio (NAR) and Patient-Generated Subjective Global Assessment (PG-SGA) score were determined by the X-tile program. Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression analysis were performed to identify prognostic factors of overall survival (OS). We then established a nomogram model. The model was assessed by a validation cohort of 72 patients treated between January 2019 and December 2019. The predictive accuracy and discriminative ability were assessed by the concordance index (C-index), a plot of the calibration curve and risk group stratification. The clinical usefulness of the nomogram was measured by decision curve analysis (DCA). Results The nomogram incorporated stage, supportive care treatment, the NAR and the PG-SGA score. The calibration curve presented good performance in the validation cohorts. The model showed discriminability with a C-index of 0.76 in the training cohort and 0.77 in the validation cohort. DCA demonstrated that the nomogram provided a higher net benefit across a wide, reasonable range of threshold probabilities for predicting OS. The survival curves of different risk groups were clearly separated. Conclusions The NAR and PG-SGA scores were independently related to survival. Our prognostic model based on the Inflam-Nutri score could provide prognostic information for advanced palliative lung cancer patients and physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘天宇发布了新的文献求助10
1秒前
1秒前
jia完成签到 ,获得积分10
1秒前
Passionfruit发布了新的文献求助10
2秒前
LZQ发布了新的文献求助10
2秒前
4秒前
严西完成签到,获得积分10
4秒前
拉长的问凝完成签到 ,获得积分10
4秒前
小蘑菇应助冰淇淋采纳,获得10
5秒前
梨理栗完成签到,获得积分10
5秒前
侠医2012完成签到,获得积分0
6秒前
吴彦祖发布了新的文献求助10
6秒前
yyh12138完成签到,获得积分10
7秒前
真三完成签到,获得积分10
8秒前
今天做实验了吗完成签到 ,获得积分10
9秒前
9秒前
Lsy完成签到,获得积分10
9秒前
yyh12138发布了新的文献求助10
10秒前
cx完成签到,获得积分10
10秒前
nulinuli完成签到 ,获得积分10
10秒前
gao_yiyi举报linda求助涉嫌违规
12秒前
cx发布了新的文献求助10
13秒前
zhang完成签到 ,获得积分10
13秒前
我爱学习完成签到,获得积分10
14秒前
爆米花应助百宝采纳,获得10
17秒前
谦让的半山完成签到 ,获得积分10
17秒前
孤独听雨的猫完成签到 ,获得积分10
18秒前
20秒前
淡然冬灵应助ououya采纳,获得10
22秒前
ttt完成签到,获得积分10
27秒前
caoxiang完成签到,获得积分10
28秒前
所所应助LXR采纳,获得10
30秒前
bzc229完成签到,获得积分10
30秒前
ws_WS_完成签到 ,获得积分10
31秒前
Chen发布了新的文献求助20
31秒前
31秒前
啊哦完成签到 ,获得积分10
32秒前
RMY完成签到 ,获得积分10
33秒前
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782796
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10234921
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 758998