已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular Typing of Gastric Cancer Based on Invasion-Related Genes and Prognosis-Related Features

单变量 列线图 计算生物学 多元统计 R包 预测模型 生物 Lasso(编程语言) 基因 比例危险模型 稳健性(进化) 肿瘤科 医学 计算机科学 内科学 总体生存率 遗传学 机器学习 计算科学 万维网
作者
Haonan Guo,Hui Tang,Yang Zhao,Qianwen Zhao,Xianliang Hou,Lei Ren
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:7
标识
DOI:10.3389/fonc.2022.848163
摘要

This study aimed to construct a prognostic stratification system for gastric cancer (GC) using tumour invasion-related genes to more accurately predict the clinical prognosis of GC.Tumour invasion-related genes were downloaded from CancerSEA, and their expression data in the TCGA-STAD dataset were used to cluster samples via non-negative matrix factorisation (NMF). Differentially expressed genes (DEGs) between subtypes were identified using the limma package. KEGG pathway and GO functional enrichment analyses were conducted using the WebGestaltR package (v0.4.2). The immune scores of molecular subtypes were evaluated using the R package ESTIMATE, MCPcounter and the ssGSEA function of the GSVA package. Univariate, multivariate and lasso regression analyses of DEGs were performed using the coxph function of the survival package and the glmnet package to construct a RiskScore model. The robustness of the model was validated using internal and external datasets, and a nomogram was constructed based on the model.Based on 97 tumour invasion-related genes, 353 GC samples from TCGA were categorised into two subtypes, thereby indicating the presence of inter-subtype differences in prognosis. A total of 569 DEGs were identified between the two subtypes; of which, four genes were selected to construct the risk model. This four-gene signature was robust and exhibited stable predictive performance in different platform datasets (GSE26942 and GSE66229), indicating that the established model performed better than other existing models.A prognostic stratification system based on a four-gene signature was developed with a desirable area under the curve in the training and independent validation sets. Therefore, the use of this system as a molecular diagnostic test is recommended to assess the prognostic risk of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助犹豫冰淇淋采纳,获得10
1秒前
1秒前
奈何应助kimon采纳,获得10
3秒前
sum完成签到 ,获得积分20
4秒前
顺利的寒云完成签到 ,获得积分10
4秒前
酷酷的汉堡完成签到,获得积分10
6秒前
科研通AI5应助Yangzx采纳,获得10
6秒前
TSWAKS发布了新的文献求助10
7秒前
9秒前
10秒前
leslie发布了新的文献求助10
14秒前
武雨寒发布了新的文献求助10
15秒前
16秒前
16秒前
小二郎应助日日是春日采纳,获得10
17秒前
李健的小迷弟应助张jy采纳,获得10
20秒前
小蘑菇应助胡诗剑采纳,获得10
21秒前
24秒前
26秒前
26秒前
29秒前
小白又鹏发布了新的文献求助10
29秒前
宴之思完成签到,获得积分10
30秒前
30秒前
30秒前
31秒前
Yangzx发布了新的文献求助10
32秒前
FashionBoy应助尛森采纳,获得10
32秒前
Dream完成签到,获得积分10
33秒前
33秒前
张jy发布了新的文献求助10
34秒前
2568269431发布了新的文献求助10
34秒前
sensAn发布了新的文献求助10
34秒前
阳光飞槐完成签到,获得积分10
35秒前
啥也不会完成签到,获得积分10
37秒前
grace完成签到,获得积分10
37秒前
直率香寒发布了新的文献求助10
38秒前
所所应助怕黑的孤菱采纳,获得10
40秒前
zz完成签到,获得积分10
41秒前
42秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646