已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular Typing of Gastric Cancer Based on Invasion-Related Genes and Prognosis-Related Features

单变量 列线图 计算生物学 多元统计 R包 预测模型 生物 Lasso(编程语言) 基因 比例危险模型 稳健性(进化) 肿瘤科 医学 计算机科学 内科学 总体生存率 遗传学 机器学习 计算科学 万维网
作者
Haonan Guo,Hui Tang,Yang Zhao,Qianwen Zhao,Xianliang Hou,Lei Ren
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:7
标识
DOI:10.3389/fonc.2022.848163
摘要

This study aimed to construct a prognostic stratification system for gastric cancer (GC) using tumour invasion-related genes to more accurately predict the clinical prognosis of GC.Tumour invasion-related genes were downloaded from CancerSEA, and their expression data in the TCGA-STAD dataset were used to cluster samples via non-negative matrix factorisation (NMF). Differentially expressed genes (DEGs) between subtypes were identified using the limma package. KEGG pathway and GO functional enrichment analyses were conducted using the WebGestaltR package (v0.4.2). The immune scores of molecular subtypes were evaluated using the R package ESTIMATE, MCPcounter and the ssGSEA function of the GSVA package. Univariate, multivariate and lasso regression analyses of DEGs were performed using the coxph function of the survival package and the glmnet package to construct a RiskScore model. The robustness of the model was validated using internal and external datasets, and a nomogram was constructed based on the model.Based on 97 tumour invasion-related genes, 353 GC samples from TCGA were categorised into two subtypes, thereby indicating the presence of inter-subtype differences in prognosis. A total of 569 DEGs were identified between the two subtypes; of which, four genes were selected to construct the risk model. This four-gene signature was robust and exhibited stable predictive performance in different platform datasets (GSE26942 and GSE66229), indicating that the established model performed better than other existing models.A prognostic stratification system based on a four-gene signature was developed with a desirable area under the curve in the training and independent validation sets. Therefore, the use of this system as a molecular diagnostic test is recommended to assess the prognostic risk of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南冥完成签到 ,获得积分10
刚刚
酷酷完成签到,获得积分20
2秒前
盖景浩关注了科研通微信公众号
3秒前
陶醉的熊完成签到 ,获得积分10
3秒前
靓丽月饼完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
哈先森完成签到,获得积分10
5秒前
6秒前
mujinluo应助迟宏珈采纳,获得20
6秒前
所所应助酷酷采纳,获得10
7秒前
8秒前
8秒前
8秒前
靓丽月饼发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
英俊的铭应助工商第一采纳,获得10
12秒前
华仔应助北北北采纳,获得30
13秒前
lilei完成签到,获得积分10
14秒前
duoduo发布了新的文献求助10
14秒前
14秒前
黄黄发布了新的文献求助10
15秒前
winew发布了新的文献求助50
16秒前
18秒前
uu完成签到,获得积分10
18秒前
科研潜力股完成签到,获得积分20
19秒前
nooraa完成签到,获得积分20
19秒前
WWWUBING完成签到,获得积分10
20秒前
CAOHOU举报体贴的海白求助涉嫌违规
20秒前
dianyi完成签到,获得积分10
20秒前
朴实浩宇完成签到 ,获得积分10
20秒前
改变自已关注了科研通微信公众号
22秒前
wangqq发布了新的文献求助10
22秒前
22秒前
kiltorh完成签到,获得积分10
23秒前
DX完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483062
求助须知:如何正确求助?哪些是违规求助? 3939098
关于积分的说明 12218897
捐赠科研通 3594317
什么是DOI,文献DOI怎么找? 1976701
邀请新用户注册赠送积分活动 1013825
科研通“疑难数据库(出版商)”最低求助积分说明 906901