Molecular Typing of Gastric Cancer Based on Invasion-Related Genes and Prognosis-Related Features

单变量 列线图 计算生物学 多元统计 R包 预测模型 生物 Lasso(编程语言) 基因 比例危险模型 稳健性(进化) 肿瘤科 医学 计算机科学 内科学 总体生存率 遗传学 机器学习 计算科学 万维网
作者
Haonan Guo,Hui Tang,Yang Zhao,Qianwen Zhao,Xianliang Hou,Lei Ren
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:7
标识
DOI:10.3389/fonc.2022.848163
摘要

This study aimed to construct a prognostic stratification system for gastric cancer (GC) using tumour invasion-related genes to more accurately predict the clinical prognosis of GC.Tumour invasion-related genes were downloaded from CancerSEA, and their expression data in the TCGA-STAD dataset were used to cluster samples via non-negative matrix factorisation (NMF). Differentially expressed genes (DEGs) between subtypes were identified using the limma package. KEGG pathway and GO functional enrichment analyses were conducted using the WebGestaltR package (v0.4.2). The immune scores of molecular subtypes were evaluated using the R package ESTIMATE, MCPcounter and the ssGSEA function of the GSVA package. Univariate, multivariate and lasso regression analyses of DEGs were performed using the coxph function of the survival package and the glmnet package to construct a RiskScore model. The robustness of the model was validated using internal and external datasets, and a nomogram was constructed based on the model.Based on 97 tumour invasion-related genes, 353 GC samples from TCGA were categorised into two subtypes, thereby indicating the presence of inter-subtype differences in prognosis. A total of 569 DEGs were identified between the two subtypes; of which, four genes were selected to construct the risk model. This four-gene signature was robust and exhibited stable predictive performance in different platform datasets (GSE26942 and GSE66229), indicating that the established model performed better than other existing models.A prognostic stratification system based on a four-gene signature was developed with a desirable area under the curve in the training and independent validation sets. Therefore, the use of this system as a molecular diagnostic test is recommended to assess the prognostic risk of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dudu发布了新的文献求助10
刚刚
WT发布了新的文献求助20
1秒前
1秒前
芦荟板蓝根完成签到,获得积分10
1秒前
领导范儿应助司徒骁采纳,获得10
1秒前
JamesPei应助zx采纳,获得10
1秒前
datouxiguage发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
家养浩完成签到,获得积分10
2秒前
cy完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
深情安青应助科研小生采纳,获得10
3秒前
3秒前
3秒前
NaCl发布了新的文献求助10
3秒前
stt完成签到,获得积分10
3秒前
完美世界应助吕大本事采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
泡面加蛋发布了新的文献求助10
5秒前
5秒前
科研通AI5应助lxy采纳,获得10
5秒前
ziwei完成签到,获得积分10
6秒前
美好如霜完成签到,获得积分10
6秒前
玺白白完成签到,获得积分20
6秒前
6秒前
耍酷念柏完成签到,获得积分10
6秒前
爱笑绿柳发布了新的文献求助10
6秒前
7秒前
风凌发布了新的文献求助10
8秒前
8秒前
英俊的铭应助ChenYX采纳,获得10
8秒前
英姑应助daqing1725采纳,获得10
9秒前
David发布了新的文献求助30
9秒前
Alex完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070701
求助须知:如何正确求助?哪些是违规求助? 4291806
关于积分的说明 13371837
捐赠科研通 4112158
什么是DOI,文献DOI怎么找? 2251879
邀请新用户注册赠送积分活动 1256949
关于科研通互助平台的介绍 1189638