Artificial-intelligence and sensing techniques for the management of insect pests and diseases in cotton: a systematic literature review

人工智能 背景(考古学) 计算机科学 卷积神经网络 病虫害综合治理 特征提取 机器学习 模式识别(心理学) 分割 农学 生物 古生物学
作者
Raul Toscano-Miranda,Magaly Toro,José Aguilar,Manuel Caro,Alejandro Marulanda-Tobón,Anibal Trebilcok
出处
期刊:The Journal of Agricultural Science [Cambridge University Press]
卷期号:160 (1-2): 16-31 被引量:25
标识
DOI:10.1017/s002185962200017x
摘要

Abstract Integrated pest management (IPM) seeks to minimize the environmental impact of pesticide application, and reduce risks to human and animal health. IPM is based on two important aspects – prevention and monitoring of diseases and insect pests – which today are being assisted by sensing and artificial-intelligence (AI) techniques. In this paper, we surveyed the detection and diagnosis, with AI, of diseases and insect pests, in cotton, which have been published between 2014 and 2021. This research is a systematic literature review. The results show that AI techniques were employed – mainly – in the context of (i) classification, (ii) image segmentation and (iii) feature extraction. The most used algorithms, in classification, were support vector machines, fuzzy inference, back-propagation neural-networks and recently, convolutional neural networks; in image segmentation, k -means was the most used; and, in feature extraction, histogram of oriented gradients, partial least-square regression, discrete wavelet transform and enhanced particle-swarm optimization were equally used. The most used sensing techniques were cameras, and field sensors such as temperature and humidity sensors. The most investigated insect pest was the whitefly, and the disease was root rot. Finally, this paper presents future works related to the use of AI and sensing techniques, to manage diseases and insect pests, in cotton; for instance, implement diagnostic, predictive and prescriptive models to know when and where the diseases and insect pests will attack and make strategies to control them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猩猩发布了新的文献求助10
刚刚
1秒前
上官若男应助wwwwnr采纳,获得10
1秒前
哎呀妈呀发布了新的文献求助10
1秒前
万能图书馆应助Dapeng采纳,获得10
3秒前
Liy发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
4秒前
orange发布了新的文献求助10
4秒前
4秒前
积极的水云完成签到,获得积分20
5秒前
田様应助星星河采纳,获得10
5秒前
sxy完成签到,获得积分10
5秒前
6秒前
三方发布了新的文献求助10
6秒前
喜庆发布了新的文献求助10
7秒前
Hh完成签到,获得积分10
7秒前
yuzhang312完成签到,获得积分10
7秒前
march应助Tayzon采纳,获得50
8秒前
8秒前
快乐婴完成签到,获得积分10
8秒前
9秒前
旭宝儿发布了新的文献求助10
10秒前
Owen应助伶俐勒采纳,获得10
10秒前
Orange应助Bean采纳,获得10
11秒前
11秒前
在水一方应助TINASURE采纳,获得10
12秒前
张牧之完成签到 ,获得积分10
12秒前
科研通AI5应助miracle1005采纳,获得10
12秒前
gy完成签到 ,获得积分20
12秒前
苒柒完成签到,获得积分10
12秒前
经卿完成签到 ,获得积分10
13秒前
14秒前
14秒前
小蘑菇应助悦耳静枫采纳,获得10
15秒前
15秒前
16秒前
16秒前
斯文败类应助longlong采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225823
求助须知:如何正确求助?哪些是违规求助? 3759129
关于积分的说明 11816594
捐赠科研通 3420582
什么是DOI,文献DOI怎么找? 1877287
邀请新用户注册赠送积分活动 930698
科研通“疑难数据库(出版商)”最低求助积分说明 838714