Objective assessment of tumor infiltrating lymphocytes as a prognostic marker in melanoma using machine learning algorithms

黑色素瘤 医学 肿瘤浸润淋巴细胞 肿瘤科 辅助治疗 内科学 接收机工作特性 队列 预后变量 H&E染色 算法 病理 癌症 免疫疗法 免疫组织化学 癌症研究 计算机科学
作者
Thazin Nwe Aung,Saba Shafi,James S. Wilmott,Saeed Nourmohammadi,Ioannis Vathiotis,Niki Gavrielatou,Aileen Fernandez,Vesal Yaghoobi,Tobias Sinnberg,Teresa Amaral,Kristian Ikenberg,Kiarash Khosrotehrani,Iman Osman,Balazs Acs,Yalai Bai,Sandra Martinez-Morilla,Myrto Moutafi,John F. Thompson,Richard A. Scolyer,David L. Rimm
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:82: 104143-104143
标识
DOI:10.1016/j.ebiom.2022.104143
摘要

Summary

Background

The prognostic value of tumor-infiltrating lymphocytes (TILs) assessed by machine learning algorithms in melanoma patients has been previously demonstrated but has not been widely adopted in the clinic. We evaluated the prognostic value of objective automated electronic TILs (eTILs) quantification to define a subset of melanoma patients with a low risk of relapse after surgical treatment.

Methods

We analyzed data for 785 patients from 5 independent cohorts from multiple institutions to validate our previous finding that automated TIL score is prognostic in clinically-localized primary melanoma patients. Using serial tissue sections of the Yale TMA-76 melanoma cohort, both immunofluorescence and Hematoxylin-and-Eosin (H&E) staining were performed to understand the molecular characteristics of each TIL phenotype and their associations with survival outcomes.

Findings

Five previously-described TIL variables were each significantly associated with overall survival (p<0.0001). Assessing the receiver operating characteristic (ROC) curves by comparing the clinical impact of two models suggests that etTILs (electronic total TILs) (AUC: 0.793, specificity: 0.627, sensitivity: 0.938) outperformed eTILs (AUC: 0.77, specificity: 0.51, sensitivity: 0.938). We also found that the specific molecular subtype of cells representing TILs includes predominantly cells that are CD3+ and CD8+ or CD4+ T cells.

Interpretation

eTIL% and etTILs scores are robust prognostic markers in patients with primary melanoma and may identify a subgroup of stage II patients at high risk of recurrence who may benefit from adjuvant therapy. We also show the molecular correlates behind these scores. Our data support the need for prospective testing of this algorithm in a clinical trial.

Funding

This work was also supported by a sponsored research agreements from Navigate Biopharma and NextCure and by grants from the NIH including the Yale SPORE in in Skin Cancer, P50 CA121974, the Yale SPORE in Lung Cancer, P50 CA196530, NYU SPORE in Skin Cancer P50CA225450 and the Yale Cancer Center Support Grant, P30CA016359.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平安完成签到,获得积分10
2秒前
PHI完成签到 ,获得积分10
9秒前
10秒前
mark163发布了新的文献求助10
15秒前
zhangxin完成签到,获得积分10
16秒前
凶狠的寄风完成签到 ,获得积分10
17秒前
阳炎完成签到,获得积分10
20秒前
loren313完成签到,获得积分0
36秒前
小哈完成签到 ,获得积分10
39秒前
烟花应助科研通管家采纳,获得10
40秒前
guhao完成签到 ,获得积分10
41秒前
小羊咩完成签到 ,获得积分0
43秒前
飞一般的亮哥完成签到 ,获得积分10
45秒前
鱼鱼完成签到 ,获得积分10
46秒前
zhangshenrong完成签到 ,获得积分10
48秒前
Cheng完成签到 ,获得积分10
49秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
57秒前
roundtree完成签到 ,获得积分0
1分钟前
研究生完成签到 ,获得积分10
1分钟前
Muncy完成签到 ,获得积分10
1分钟前
1分钟前
mark33442完成签到,获得积分10
1分钟前
jctyp完成签到,获得积分10
1分钟前
梦游菌完成签到 ,获得积分10
1分钟前
新奇完成签到 ,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
afterglow完成签到 ,获得积分10
1分钟前
王木木完成签到,获得积分10
1分钟前
独特易形完成签到 ,获得积分10
1分钟前
CH完成签到 ,获得积分10
1分钟前
Rossie完成签到,获得积分10
2分钟前
小宝爸爸完成签到 ,获得积分10
2分钟前
研研研完成签到,获得积分10
2分钟前
2分钟前
如泣草芥完成签到,获得积分10
2分钟前
kitsch完成签到 ,获得积分10
2分钟前
HCT完成签到,获得积分10
2分钟前
大脸猫完成签到 ,获得积分10
2分钟前
飞翔的鸣完成签到,获得积分10
2分钟前
Ceci完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754325
求助须知:如何正确求助?哪些是违规求助? 4098193
关于积分的说明 12679064
捐赠科研通 3811849
什么是DOI,文献DOI怎么找? 2104387
邀请新用户注册赠送积分活动 1129537
关于科研通互助平台的介绍 1007168