已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature Ranking Importance from Multimodal Radiomic Texture Features using Machine Learning Paradigm: A Biomarker to Predict the Lung Cancer

人工智能 计算机科学 灰度级 支持向量机 接收机工作特性 模式识别(心理学) 肺癌 特征(语言学) 特征提取 排名(信息检索) 共现矩阵 机器学习 图像处理 图像纹理 图像(数学) 医学 病理 语言学 哲学
作者
Seong‐O Shim,Monagi H. Alkinani,Lal Hussain,Wajid Aziz
出处
期刊:Big Data Research [Elsevier BV]
卷期号:29: 100331-100331 被引量:15
标识
DOI:10.1016/j.bdr.2022.100331
摘要

The machine learning based techniques for detection of lungs cancer can assist the clinicians in assessing the risk of pulmonary nodules being malignant. We are developing non-invasive methods to accurately distinguish the non-small cell cancer carcinoma (NSCLC) from small cell cancer carcinoma (SCLC) brain metastases. In this study, we extracted multimodal radiomic features including texture and statistical Haralick texture, gray level co-occurrence matrix (GLCM) features, Gray level size-zone matrix (GLSZM) features, Gray-level run-length matrix (GLRLM) features. We also applied image enhancement contrast stretching and gamma correction to further improve the classification performance. We then ranked these features in order to investigate that which features category is more important to accurately distinguish the lung cancer subtypes. We employed robust machine learning techniques. We evaluated the performance based on top ranked 03 and 05 features and last ranked 05 and 02 features based on the receiver operating curve (ROC). The highest classification performance in terms of accuracy and AUC was obtained with all Haralick texture features using SVM polynomial with accuracy (99.89%) and AUC (0.9984). The classification performance with contrast stretching [0.02, 0.08; 0.05, 0.95] and gamma correction with gamma = 0.5 yielded highest accuracy of 100% and AUC of 1.00. The top three ranked features using image enhancement methods also yielded accuracy more than 95% which indicates that these top ranked features contributed higher in accuracy classifying the lung cancer subtypes. The results revealed that proposed model with multimodal features, image enhancement techniques and features ranking methods improved the classification performance which can be used for better diagnostic aid to improve the decision making to treat the patients suffering from SCLC and NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹完成签到,获得积分10
3秒前
鲤鱼不言应助独特绣连采纳,获得10
4秒前
Hello应助小叶同学采纳,获得10
5秒前
善学以致用应助jasonqing采纳,获得10
6秒前
7秒前
bkagyin应助yesa采纳,获得30
8秒前
方的圆完成签到 ,获得积分10
16秒前
17秒前
tang发布了新的文献求助10
20秒前
思源应助cap科研小能手采纳,获得10
20秒前
25秒前
26秒前
27秒前
28秒前
oxs完成签到 ,获得积分10
30秒前
啊嘞嘞完成签到 ,获得积分10
31秒前
31秒前
lianghua发布了新的文献求助10
32秒前
tang完成签到,获得积分10
33秒前
孙孙发布了新的文献求助10
34秒前
34秒前
阔达雪卉发布了新的文献求助10
35秒前
迷路冰颜完成签到 ,获得积分10
37秒前
37秒前
不与仙同完成签到 ,获得积分10
39秒前
doctorduanmu发布了新的文献求助30
40秒前
番茄黄瓜芝士片完成签到 ,获得积分10
42秒前
小丑鱼儿完成签到 ,获得积分10
42秒前
44秒前
QQWQEQRQ完成签到,获得积分10
44秒前
doctorduanmu完成签到,获得积分10
46秒前
愉快的犀牛完成签到 ,获得积分10
47秒前
焦逸卓完成签到 ,获得积分10
47秒前
孤独的大灰狼完成签到,获得积分10
48秒前
卑微学术人完成签到 ,获得积分10
49秒前
評評完成签到,获得积分10
49秒前
三年半完成签到,获得积分10
51秒前
拼搏问薇完成签到 ,获得积分10
57秒前
程负暄完成签到 ,获得积分10
1分钟前
仁爱的雁芙完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375410
求助须知:如何正确求助?哪些是违规求助? 3871610
关于积分的说明 12067091
捐赠科研通 3514451
什么是DOI,文献DOI怎么找? 1928670
邀请新用户注册赠送积分活动 970300
科研通“疑难数据库(出版商)”最低求助积分说明 869036