Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method

合成孔径雷达 遥感 图像融合 图像分辨率 均方误差 传感器融合 科恩卡帕 计算机科学 地质学 人工智能 图像(数学) 数学 统计 机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要

River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
李健应助Hiker采纳,获得10
3秒前
4秒前
4秒前
5秒前
kay发布了新的文献求助10
5秒前
JerryZ发布了新的文献求助10
6秒前
旧辞发布了新的文献求助10
6秒前
上官若男应助和谐的梦蕊采纳,获得10
7秒前
yyytr完成签到,获得积分10
7秒前
8秒前
烟花应助吴谷杂粮采纳,获得10
8秒前
lilyliu发布了新的文献求助10
9秒前
jhb发布了新的文献求助10
9秒前
9秒前
善学以致用应助kitty采纳,获得10
10秒前
上官若男应助不安乐菱采纳,获得30
10秒前
11秒前
007发布了新的文献求助10
12秒前
田様应助超帅凡阳采纳,获得10
12秒前
13秒前
葛藟萦藤发布了新的文献求助10
14秒前
狂野砖头发布了新的文献求助10
14秒前
lilyliu完成签到,获得积分10
16秒前
祁祁发布了新的文献求助30
17秒前
cv完成签到,获得积分20
17秒前
17秒前
齐嘉懿发布了新的文献求助10
17秒前
哈哈哈发布了新的文献求助10
18秒前
18秒前
十二完成签到,获得积分10
18秒前
19秒前
19秒前
受伤的小松鼠完成签到,获得积分10
20秒前
joey完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056