Enhanced Metagenomic Deep Learning for Disease Prediction and Reproducible Signature Identification by Restructured Microbiome 2D-Representations

基因组 微生物群 鉴定(生物学) 计算生物学 签名(拓扑) 人工智能 疾病 计算机科学 深度学习 机器学习 生物 数据科学 生物信息学 医学 遗传学 生态学 数学 内科学 基因 几何学
作者
Wan Xiang Shen,Shu Ran Liang,Yu Jiang,Yu Chen
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4129422
摘要

Metagenomic analysis has been explored for disease diagnosis and biomarker discovery. Low-sample sizes, high-dimensionality, and sparsity of metagenomic data challenge metagenomic investigations. Here, an unsupervised Microbial Embedding, Grouping, and Mapping Algorithm (MEGMA) was developed to transform metagenomic data into individualised multichannel microbiome 2D-representation by manifold learning and clustering of microbial profiles (e.g., composition, abundance, hierarchy, and taxonomy). These 2D-representations enable enhanced disease prediction by established deep ConvNet architectures, significantly outperforming the state-of-the-art machine learning and deep learning models in metagenomic benchmark datasets. These 2D-representations combined with ConvNet explainable module robustly identified more reliable and replicable signatures. In agreement with experimental findings, our method identified important microbes of five disease datasets (cirrhosis, obesity, type 2 diabetes, inflammatory bowel disease, and colorectal cancer (CRC). Employing MEGMA and ConvNet, we also discovered highly consistent sets of marker microbes in the cross-cohort CRC patients and microbial shifts in different CRC stages.Funding Information: We appreciate the financial supports from the National Key R&D Program of China, Synthetic Biology Research (2019YFA0905900), Shenzhen Municipal Government grants (No.2019156, JCYJ20170413113448742 and NO.201901), Department of Science and Technology of Guangdong Province (No. 2017B030314083), and Singapore Academic Funds R-148-000- 273-114 and NUS Research Scholarships. Declaration of Interests: The authors declare no competing interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAHPH发布了新的文献求助10
刚刚
yyyyou完成签到,获得积分10
1秒前
poem完成签到,获得积分10
1秒前
1秒前
kd1412发布了新的文献求助10
1秒前
2秒前
2秒前
huhu完成签到,获得积分10
2秒前
2秒前
3秒前
小蘑菇应助315947采纳,获得10
3秒前
微热山丘完成签到,获得积分10
3秒前
3秒前
slm完成签到,获得积分10
4秒前
liujie666发布了新的文献求助10
4秒前
4秒前
开心人达发布了新的文献求助10
5秒前
5秒前
qaa2274278941发布了新的文献求助10
6秒前
7秒前
0美团外卖0完成签到,获得积分10
7秒前
ForComposites发布了新的文献求助10
7秒前
啦啦啦啦发布了新的文献求助10
7秒前
7秒前
小于完成签到,获得积分10
8秒前
隐形曼青应助Jenaloe采纳,获得10
8秒前
xiaominza发布了新的文献求助10
8秒前
明明完成签到,获得积分20
8秒前
8秒前
9秒前
ED应助pm采纳,获得10
9秒前
李娇完成签到 ,获得积分10
9秒前
9秒前
寒风发布了新的文献求助10
9秒前
liujie666完成签到,获得积分10
9秒前
愉快新筠发布了新的文献求助10
9秒前
9秒前
自然1111发布了新的文献求助10
10秒前
i十七完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620