(Invited) Schematic Description of the Internal Stress Distribution Responsible for Defect Generation in Larger-Diameter PVT-Grown 4H-SiC Single Crystals

材料科学 位错 残余应力 压力(语言学) Crystal(编程语言) 应力场 工程物理 凝聚态物理 复合材料 结构工程 计算机科学 工程类 物理 有限元法 哲学 语言学 程序设计语言
作者
Tatsuo Fujimoto,Masashi Nakabayashi,Shohji Ushio,Komomo Tani,Masakazu Katsuno,Shinya Sato,Hiroshi Tsuge
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (35): 2268-2268
标识
DOI:10.1149/ma2016-02/35/2268
摘要

Accurate control of the growth conditions, specifically in view of the temperature field, is more important as the diameter of SiC single crystals becomes larger. The temperature field during the physical vapor transport (PVT) growth inevitably induces the residual internal stresses depending on its actual temperature distribution profile, and the strength of the residual stress will become more significant for larger diameter SiC crystals, probably affecting on the crystal quality such as the dislocation density. Such views has, therefore, been well-accepted so-far as an essential key issue for realizing SiC crystals with lower levels of the dislocation density as well as the appropriately-controlled mechanical properties suitable for device productions such as BOW, and a number of literatures regarding numerical calculations of the stress distribution inside the crystals have hence been performed worldwide [1]. For PVT-growths of 4H-SiC with higher crystallinity applicable to power device applications, it is important to establish first the stabilization of 4H-SiC single polytype growth, and then realize the minimization of residual internal stress levels inside the crystal. However, these guiding principles usually lead to results in contradiction; for example, an appropriate convex shape of the grown crystal surface is necessary for single 4H-SiC polytype crystal growths, but in principle such growth conditions give rise to unwanted generation of the internal stress inside the crystal [2], and therefore a compromise has to be required for careful optimization of designing the growth conditions. In our last presentation at ECS conference in 2012, we have demonstrated that the PVT process of SiC can be described successfully in terms of the phase transition between equilibrium phases in Si-C binary system [3]. In this presentation, we first discuss our model, in particular, in the viewpoint of microscopic elementary reaction processes which are ignored in the original representation scheme despite of its crucial importance for stabilization of 4H-SiC crystal growth. Upon the macroscopic growth stability described above, intense descriptions for possible emergence of thermoelastic inertia forces inside the SiC crystal will be developed by introducing a schematic representation of stress distributions in terms of the thermodynamic formulations [4]. The discussions are concentrated mainly on the shear stress component, σ rz , and based upon the results obtained from the representation, the effect of the growth parameters on the SiC crystal quality will be discussed in order to obtain larger-diameter 4H-SiC single crystals with properties of importance for applications, optimized in views of both crystallinity and mechanical characteristics. References [1] For example, see, R. Ma, et al., Crystal Growth & Design, 2 (2002) p.213. [2] S. Ha, et al., Material Science Forum, 338-342 (2000) p.67. [3] T. Fujimoto, et al., ECS Journal of Solid State Science and Technology, 2 (2013) p.N3018. [4] B. A. Burney, and J. H. Weiner, “Theory of thermal stresses”, John Wiley & Sons, Inc. 1960.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
心行完成签到 ,获得积分20
刚刚
hh完成签到 ,获得积分10
1秒前
铜离子完成签到,获得积分10
2秒前
HP完成签到,获得积分10
2秒前
zuihaodewomen完成签到 ,获得积分10
2秒前
2秒前
塔巴德完成签到,获得积分10
3秒前
清秀凡霜完成签到,获得积分10
3秒前
3秒前
眯眯眼的鞋垫完成签到,获得积分10
4秒前
熠熠完成签到,获得积分10
4秒前
6秒前
单纯黑米完成签到,获得积分10
6秒前
马登完成签到,获得积分10
6秒前
加加知发布了新的文献求助10
6秒前
7秒前
zjw完成签到 ,获得积分10
9秒前
夹夹完成签到,获得积分10
9秒前
11秒前
12秒前
一定accept完成签到 ,获得积分10
12秒前
wzz发布了新的文献求助10
13秒前
点心发布了新的文献求助30
14秒前
嗯哼完成签到 ,获得积分10
15秒前
15秒前
16秒前
杨杨杨完成签到,获得积分10
16秒前
echo完成签到,获得积分10
16秒前
Ava应助塔巴德采纳,获得10
16秒前
共享精神应助加加知采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
cici0707应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109