Unsupervised novelty pattern classification of shmoo plots for visualizing the test results of integrated circuits

新颖性 计算机科学 人工智能 考试(生物学) 模式识别(心理学) 新知识检测 数据挖掘 机器学习 神学 生物 哲学 古生物学
作者
Hyun Soo Shin,Young‐Ju Kim,Chang Ouk Kim,Sung Ho Park
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117341-117341
标识
DOI:10.1016/j.eswa.2022.117341
摘要

• Shmoo plots in semiconductor manufacturing are used for indicating device state. • We address high-dimensional and multiclass imbalance challenges for shmoo plots. • We introduce a feature extraction process for presenting clear shmoo plot patterns. • We propose a two-stage clustering process to solve multiclass imbalance situations. • To demonstrate the applicability of the proposed model, real field data is used. Shmoo plots are visual tools for verifying the performance of integrated circuit devices, where each cell in a plot records whether the examined device operates normally under the test condition. When identifying the device state, the overall pass/fail pattern appearing in the shmoo plot is more important than the test results for individual conditions. Because similar shmoo plots indicate similar device characteristics, defect causes, and process peculiarities, engineers can analyze device quality and defect causes by classifying shmoo plot patterns. Most mass-produced devices have high and stable yields, whereas defect devices are incredibly scarce. If engineers classify numerous device plots manually at a semiconductor test site, significant time and resources will be required, and the result will likely vary based on the engineers’ experience. Therefore, shmoo plot usage is limited unless an automatic classification model is adopted. Moreover, training high-performance pattern classifiers that do not overfit the models is difficult because shmoo plots contain high-dimensional data and unlabeled, multiclass imbalanced datasets, where the number of defects is smaller than that of normal plots and pattern labels are seldom assigned. In this study, we propose a novel feature extraction process and a two-stage clustering process to distinguish novel shmoo plot patterns. Actual shmoo plots obtained from a wafer test stage are used to compare the experimental results obtained via the proposed method and conventional methods, and they verify the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助cc采纳,获得10
1秒前
刘金金完成签到,获得积分10
2秒前
豆小豆完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Vivian应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
蜀安应助科研通管家采纳,获得30
4秒前
6秒前
沙耶酱完成签到,获得积分10
7秒前
易只瑜完成签到,获得积分20
7秒前
qqqJUAN发布了新的文献求助10
8秒前
英俊的馒头完成签到,获得积分10
9秒前
CipherSage应助Leohp采纳,获得20
10秒前
无心的无敌完成签到,获得积分10
10秒前
11秒前
慈祥的冰露完成签到,获得积分10
12秒前
lxb驳回了852应助
12秒前
小瓶盖完成签到 ,获得积分10
12秒前
浮游应助视野胤采纳,获得10
14秒前
李洋发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
naraku应助李键刚采纳,获得20
18秒前
Redback完成签到,获得积分10
18秒前
19秒前
bloomjjj发布了新的文献求助10
21秒前
猪猪hero发布了新的文献求助10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
浮游应助甜蜜暴徒采纳,获得10
22秒前
23秒前
林柚发布了新的文献求助10
23秒前
舟舟完成签到 ,获得积分10
24秒前
英吉利25发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490133
求助须知:如何正确求助?哪些是违规求助? 4588844
关于积分的说明 14421594
捐赠科研通 4520646
什么是DOI,文献DOI怎么找? 2476796
邀请新用户注册赠送积分活动 1462282
关于科研通互助平台的介绍 1435188