边距(机器学习)
计算机科学
光学性能监测
背景(考古学)
鉴定(生物学)
光学滤波器
光谱(功能分析)
滤波器(信号处理)
电子工程
工程类
光学
物理
波分复用
机器学习
计算机视觉
量子力学
生物
植物
古生物学
波长
作者
Luis Velasco,Marc Ruiz,Behnam Shariati,Alba P. Vela
出处
期刊:Elsevier eBooks
[Elsevier]
日期:2022-01-01
卷期号:: 225-279
标识
DOI:10.1016/b978-0-32-385227-2.00015-2
摘要
In this chapter, we propose Machine Learning (ML) based solutions for Optical Spectrum Analysis of Elastic Optical Networks (EON). Specifically, we present novel failure detection and identification solutions utilizing the optical spectrum traces captured by cost-effective coarse-granular Optical Spectrum Analyzers (OSA). We demonstrate the effectiveness of the developed solutions for detecting and identifying filter-related failures in the context of Spectrum-Switched Optical Networks (SSON), as well as transmitter-related laser failures in Filterless Optical Networks (FON). Such detection and identification can contribute to the cost reduction and lowering the required margin in optical networks.
科研通智能强力驱动
Strongly Powered by AbleSci AI