Novel “resect and analysis” approach for T2 colorectal cancer with use of artificial intelligence

医学 接收机工作特性 结直肠癌 癌胚抗原 置信区间 阶段(地层学) 结肠切除术 淋巴结 淋巴血管侵犯 癌症 外科 放射科 转移 内科学 古生物学 生物
作者
Katsuro Ichimasa,Kenta Nakahara,Shin‐ei Kudo,Masashi Misawa,Michael Bretthauer,Shoji Shimada,Yusuke Takehara,Shunpei Mukai,Yuta Kouyama,Hideyuki Miyachi,Naruhiko Sawada,Kensaku Mori,Fumio Ishida,Yuichi Mori
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:96 (4): 665-672.e1 被引量:25
标识
DOI:10.1016/j.gie.2022.04.1305
摘要

Because of a lack of reliable preoperative prediction of lymph node involvement in early-stage T2 colorectal cancer (CRC), surgical resection is the current standard treatment. This leads to overtreatment because only 25% of T2 CRC patients turn out to have lymph node metastasis (LNM). We assessed a novel artificial intelligence (AI) system to predict LNM in T2 CRC to ascertain patients who can be safely treated with less-invasive endoscopic resection such as endoscopic full-thickness resection and do not need surgery.We included 511 consecutive patients who had surgical resection with T2 CRC from 2001 to 2016; 411 patients (2001-2014) were used as a training set for the random forest-based AI prediction tool, and 100 patients (2014-2016) were used to validate the AI tool performance. The AI algorithm included 8 clinicopathologic variables (patient age and sex, tumor size and location, lymphatic invasion, vascular invasion, histologic differentiation, and serum carcinoembryonic antigen level) and predicted the likelihood of LNM by receiver-operating characteristics using area under the curve (AUC) estimates.Rates of LNM in the training and validation datasets were 26% (106/411) and 28% (28/100), respectively. The AUC of the AI algorithm for the validation cohort was .93. With 96% sensitivity (95% confidence interval, 90%-99%), specificity was 88% (95% confidence interval, 80%-94%). In this case, 64% of patients could avoid surgery, whereas 1.6% of patients with LNM would lose a chance to receive surgery.Our proposed AI prediction model has a potential to reduce unnecessary surgery for patients with T2 CRC with very little risk. (Clinical trial registration number: UMIN 000038257.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱康康文献完成签到 ,获得积分10
4秒前
Wang完成签到 ,获得积分10
4秒前
楚楚完成签到 ,获得积分10
13秒前
17835152738完成签到,获得积分10
13秒前
cata完成签到,获得积分10
18秒前
熊泰山完成签到 ,获得积分10
21秒前
22秒前
24秒前
gtgyh完成签到 ,获得积分10
29秒前
无奈的萍发布了新的文献求助10
29秒前
kangkang完成签到 ,获得积分10
33秒前
皮皮完成签到 ,获得积分10
35秒前
aowulan完成签到 ,获得积分10
36秒前
程翠丝完成签到,获得积分10
37秒前
但大图完成签到 ,获得积分10
38秒前
双青豆完成签到 ,获得积分10
40秒前
40秒前
真真完成签到 ,获得积分10
43秒前
大灰狼完成签到 ,获得积分10
49秒前
lql完成签到 ,获得积分10
50秒前
chenying完成签到 ,获得积分10
52秒前
53秒前
55秒前
Owen应助大灰狼采纳,获得30
58秒前
机智的乌完成签到 ,获得积分10
59秒前
KK完成签到 ,获得积分10
1分钟前
MM完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
如初完成签到,获得积分10
1分钟前
红茸茸羊完成签到 ,获得积分10
1分钟前
fxy完成签到 ,获得积分10
1分钟前
1分钟前
shlw发布了新的文献求助10
1分钟前
疯狂的绝山完成签到 ,获得积分10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
1分钟前
jennie完成签到 ,获得积分10
1分钟前
韩钰小宝完成签到 ,获得积分10
1分钟前
shlw完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994