亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new human-based metahurestic optimization method based on mimicking cooking training

培训(气象学) 计算机科学 人工智能 机器学习 地理 气象学
作者
Eva Trojovská,Mohammad Dehghani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1) 被引量:49
标识
DOI:10.1038/s41598-022-19313-2
摘要

Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
wenwen完成签到,获得积分10
1秒前
小小发布了新的文献求助10
3秒前
3秒前
星辰大海应助科研捣蛋鬼采纳,获得10
3秒前
背后雨柏完成签到 ,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
wenwen发布了新的文献求助10
8秒前
卡拉米完成签到,获得积分10
9秒前
LUMO完成签到 ,获得积分10
11秒前
12秒前
16秒前
栗子呢呢呢完成签到 ,获得积分10
18秒前
bkagyin应助小小采纳,获得10
19秒前
yyyyyy完成签到 ,获得积分10
20秒前
nnnick完成签到,获得积分0
20秒前
28秒前
嘟嘟嘟发布了新的文献求助10
33秒前
在水一方应助恭喜发财采纳,获得10
36秒前
乐乐应助众人皆醉我独醒采纳,获得10
38秒前
CipherSage应助Gaopkid采纳,获得10
41秒前
yema完成签到 ,获得积分10
41秒前
Gaopkid完成签到,获得积分10
45秒前
48秒前
momo完成签到,获得积分10
48秒前
49秒前
momo发布了新的文献求助10
53秒前
123456发布了新的文献求助10
54秒前
59秒前
123456完成签到,获得积分10
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得30
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
科研学术完成签到,获得积分10
1分钟前
Owen应助不可说采纳,获得10
1分钟前
Z可完成签到 ,获得积分10
1分钟前
不可说完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492072
捐赠科研通 3095700
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792