A new human-based metahurestic optimization method based on mimicking cooking training

培训(气象学) 计算机科学 人工智能 机器学习 地理 气象学
作者
Eva Trojovská,Mohammad Dehghani
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:49
标识
DOI:10.1038/s41598-022-19313-2
摘要

Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助刘浩采纳,获得10
刚刚
BowieHuang应助甜美的芷采纳,获得10
1秒前
einspringen发布了新的文献求助10
2秒前
安详岱周发布了新的文献求助10
2秒前
简一发布了新的文献求助10
2秒前
桐桐应助完美的jia采纳,获得10
2秒前
jmy1995发布了新的文献求助10
2秒前
黄萧雨完成签到,获得积分10
3秒前
鸣谦发布了新的文献求助20
3秒前
轻松凡英完成签到,获得积分10
4秒前
传奇3应助sfliufighting采纳,获得10
5秒前
尘迹完成签到,获得积分10
5秒前
7秒前
7秒前
sean完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
轨迹应助科研通管家采纳,获得20
11秒前
云梦江海应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
所所应助出其东门采纳,获得10
11秒前
tuanheqi应助科研通管家采纳,获得150
11秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
云梦江海应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
安详岱周完成签到,获得积分20
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Adc完成签到,获得积分10
12秒前
云梦江海应助科研通管家采纳,获得10
12秒前
李里黎发布了新的文献求助10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713487
求助须知:如何正确求助?哪些是违规求助? 5215699
关于积分的说明 15270963
捐赠科研通 4865238
什么是DOI,文献DOI怎么找? 2611937
邀请新用户注册赠送积分活动 1562134
关于科研通互助平台的介绍 1519378