Artificial Intelligence‐Assisted Whole Slide Image Analysis for Lymph Node Status Prediction in Early Colorectal and Gastric Cancer

医学 结直肠癌 淋巴结转移 淋巴结 指南 内镜黏膜下剥离术 粘膜切除术 放射科 普通外科 医学物理学 癌症 内窥镜检查 内科学 病理 转移
作者
Katsuro Ichimasa,Shin‐ei Kudo,Yuta Kouyama,Yuki Takashina,Hyunsoo Chung,Yasuharu Maeda,Wai Phyo Lwin,Yosuke Toya,Waku Hatta,Jimmy Bok Yan So,Khay Guan Yeoh,Tetsuo Nemoto,Masashi Misawa
出处
期刊:Digestive Endoscopy [Wiley]
标识
DOI:10.1111/den.70042
摘要

ABSTRACT With the widespread use of advanced endoscopic techniques such as endoscopic submucosal dissection, an increasing number of early colorectal cancer (T1 CRC) and early gastric cancer (EGC) cases are now treated with endoscopic resection as the first‐line approach. However, the risk of lymph node metastasis (LNM)—approximately 10% in T1 CRC and 5%–10% in EGC—necessitates additional surgical resection in high‐risk cases. Current guideline‐based risk stratification depends on pathological evaluation of the resected specimens to determine whether further surgery is needed. Yet both T1 CRC and EGC face shared challenges in LNM risk prediction, particularly in terms of accuracy and reproducibility. This review focuses on the latter. The diagnosis of key pathological risk factors, which serve as predictors of LNM, is subject to considerable interobserver variability among pathologists. One potential solution is the application of artificial intelligence (AI)‐assisted whole slide image (WSI) analysis, which has been gaining attention in recent studies. AI‐assisted models for LNM prediction in T1 CRC and EGC have shown encouraging results, suggesting that WSI‐based AI could offer a pathologist‐independent strategy to improve diagnostic consistency. However, the field remains in an early stage, with key limitations including small sample sizes and limited external validation. Additional high‐quality evidence will be needed to support clinical implementation. Addressing challenges such as stain standardization and image artifacts will also be critical for achieving regulatory approval and broader clinical adoption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻歌水越完成签到 ,获得积分10
刚刚
1秒前
sunshine完成签到,获得积分10
1秒前
1秒前
2秒前
徐丢丢完成签到 ,获得积分10
2秒前
mkl发布了新的文献求助10
4秒前
KL应助研友_ngXbVZ采纳,获得10
4秒前
affff完成签到 ,获得积分10
6秒前
甘sir完成签到 ,获得积分10
6秒前
xiaobin发布了新的文献求助10
6秒前
平淡的雁开完成签到,获得积分10
7秒前
poly完成签到,获得积分10
8秒前
梁伟鑫完成签到 ,获得积分10
9秒前
结实凌瑶完成签到 ,获得积分10
9秒前
Sodagreen2023完成签到,获得积分10
12秒前
Vicky完成签到 ,获得积分10
14秒前
mkl完成签到,获得积分10
15秒前
打打应助nqterysc采纳,获得10
17秒前
余生完成签到 ,获得积分10
19秒前
YZ完成签到 ,获得积分10
19秒前
Man_proposes完成签到,获得积分10
21秒前
magic_sweets完成签到,获得积分10
21秒前
丽莉完成签到,获得积分20
21秒前
LLL完成签到,获得积分10
23秒前
Freelover完成签到,获得积分10
23秒前
24秒前
huco完成签到,获得积分10
24秒前
Cc完成签到 ,获得积分10
25秒前
丽莉发布了新的文献求助10
29秒前
WENS完成签到,获得积分10
29秒前
Cumin完成签到 ,获得积分10
29秒前
56360完成签到,获得积分10
30秒前
甜甜的满天完成签到,获得积分10
34秒前
byby完成签到,获得积分10
36秒前
不能吃太饱完成签到 ,获得积分10
36秒前
zzwwill完成签到,获得积分10
36秒前
37秒前
王妍完成签到 ,获得积分10
37秒前
带头大哥应助qq采纳,获得200
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4754520
求助须知:如何正确求助?哪些是违规求助? 4098319
关于积分的说明 12679308
捐赠科研通 3812048
什么是DOI,文献DOI怎么找? 2104436
邀请新用户注册赠送积分活动 1129642
关于科研通互助平台的介绍 1007335