亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks for solving moving interface flow problems using the level set approach

物理 集合(抽象数据类型) 接口(物质) 人工神经网络 流量(数学) 统计物理学 应用数学 经典力学 理论物理学 机械 人工智能 数学 计算机科学 最大气泡压力法 气泡 程序设计语言
作者
M. G. Mullins,Hamza Kamil,Adil Fahsi,Azzeddine Soulaïmani
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (10) 被引量:1
标识
DOI:10.1063/5.0289386
摘要

This paper advances the use of physics-informed neural networks (PINNs) architectures to address moving interface problems via the level set method. Originally developed for other partial differential equations-based problems, we particularly leverage physics-informed deep learning with residual adaptive networks' (PirateNet) features—including causal training, sequence-to-sequence learning, random weight factorization, and Fourier feature embeddings—and tailor them to handle problems with complex interface dynamics. Numerical experiments validate this framework on benchmark problems such as Zalesak's disk rotation and time-reversed vortex flow. We demonstrate that PINNs can efficiently solve level set problems exhibiting significant interface deformation without the need for upwind numerical stabilization, as generally required by classic discretization methods, or additional mass conservation schemes. However, incorporating an Eikonal regularization term in the loss function with an appropriate weight can further enhance results in specific scenarios. Our results indicate that PINNs with the PirateNet architecture surpass conventional PINNs in accuracy, achieving state-of-the-art error rates of L2=0.14% for Zalesak's disk and L2=0.85% for the time-reversed vortex flow problem, as compared to reference solutions. Additionally, for a complex two-phase flow dam break problem coupling the level set with the Navier–Stokes equations, we propose a geometric reinitialization method embedded within the sequence-to-sequence training scheme to ensure long-term stability and accurate inference of the level set field. The proposed framework has the potential to be broadly applicable to industrial problems that involve moving interfaces, such as free-surface flows in hydraulics and maritime engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wl发布了新的文献求助20
16秒前
Kun应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
MchemG应助科研通管家采纳,获得20
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
CC完成签到,获得积分10
29秒前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
程晓研完成签到 ,获得积分10
1分钟前
lovelife完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
烟花应助清秀翠风采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Kun应助科研通管家采纳,获得10
2分钟前
Cruffin完成签到 ,获得积分10
2分钟前
3分钟前
思柔完成签到,获得积分10
3分钟前
领导范儿应助Marshall采纳,获得10
3分钟前
wl完成签到,获得积分10
3分钟前
3分钟前
娇气的幼南完成签到 ,获得积分10
3分钟前
Marshall发布了新的文献求助10
3分钟前
4分钟前
莨菪发布了新的文献求助10
4分钟前
MchemG应助科研通管家采纳,获得20
4分钟前
4分钟前
莨菪完成签到,获得积分10
4分钟前
wl发布了新的文献求助10
4分钟前
4分钟前
5分钟前
圈地自萌X完成签到 ,获得积分20
5分钟前
饭团0814完成签到,获得积分10
6分钟前
jyy发布了新的文献求助20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160