ToothMaker: Realistic Panoramic Dental Radiograph Generation via Disentangled Control

全景片 计算机科学 计算机视觉 人工智能 迭代重建 射线照相术 口腔正畸科 医学 放射科
作者
Weihao Yu,Xiaoqing Guo,Wuyang Li,Xinyu Liu,Hui Chen,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3588466
摘要

Generating high-fidelity dental radiographs is essential for training diagnostic models. Despite the development of numerous methods for other medical data, generative approaches in dental radiology remain unexplored. Due to the intricate tooth structures and specialized terminology, these methods often yield ambiguous tooth regions and incorrect dental concepts when applied to dentistry. In this paper, we take the first attempt to investigate diffusion-based teeth X-ray image generation and propose ToothMaker, a novel framework specifically designed for the dental domain. Firstly, to synthesize X-ray images that possess accurate tooth structures and realistic radiological styles simultaneously, we design control-disentangled fine-tuning (CDFT) strategy. Specifically, we present two separate controllers to handle style and layout control respectively, and introduce a gradient-based decoupling method that optimizes each using their corresponding disentangled gradients. Secondly, to enhance model's understanding of dental terminology, we propose prior-disentangled guidance module (PDGM), enabling precise synthesis of dental concepts. It utilizes large language model to decompose dental terminology into a series of meta-knowledge elements and performs interactions and refinements through hypergraph neural network. These elements are then fed into the network to guide the generation of dental concepts. Extensive experiments demonstrate the high fidelity and diversity of the images synthesized by our approach. By incorporating the generated data, we achieve substantial performance improvements on downstream segmentation and visual question answering tasks, indicating that our method can greatly reduce the reliance on manually annotated data. Code will be public available at https://github.com/CUHK-AIM-Group/ToothMaker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉秋发布了新的文献求助10
1秒前
2秒前
自觉志泽发布了新的文献求助10
2秒前
bin完成签到,获得积分10
3秒前
千岛发布了新的文献求助10
3秒前
姐姐完成签到,获得积分10
3秒前
4秒前
乐乐应助优美的听白采纳,获得10
5秒前
豆豆完成签到,获得积分10
6秒前
yes完成签到,获得积分10
7秒前
Yxs完成签到,获得积分20
7秒前
liuliu发布了新的文献求助10
7秒前
酷波er应助laddy采纳,获得10
8秒前
大模型应助落后十八采纳,获得10
8秒前
10秒前
10秒前
11秒前
念姬发布了新的文献求助10
12秒前
懵懂的定帮关注了科研通微信公众号
13秒前
13秒前
14秒前
陈可可发布了新的文献求助10
15秒前
科研通AI5应助Alice采纳,获得10
18秒前
burninghyb发布了新的文献求助10
19秒前
易柒发布了新的文献求助30
19秒前
lk_xx发布了新的文献求助10
20秒前
尹汉通完成签到 ,获得积分10
22秒前
25秒前
狮子卷卷完成签到,获得积分10
26秒前
CodeCraft应助Cloud采纳,获得10
26秒前
27秒前
巨大爸爸完成签到,获得积分10
28秒前
高兴的又菡完成签到,获得积分10
28秒前
陶醉清完成签到,获得积分20
30秒前
专炸油条完成签到 ,获得积分10
32秒前
大鱼发布了新的文献求助10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4147535
求助须知:如何正确求助?哪些是违规求助? 3684272
关于积分的说明 11640270
捐赠科研通 3378125
什么是DOI,文献DOI怎么找? 1853944
邀请新用户注册赠送积分活动 916317
科研通“疑难数据库(出版商)”最低求助积分说明 830251