解算器
方向(向量空间)
人工神经网络
计算机科学
串联机械手
计算复杂性理论
约束(计算机辅助设计)
运动学
跟踪(教育)
方案(数学)
控制理论(社会学)
人工智能
控制工程
机器人
控制(管理)
算法
工程类
数学
并联机械手
几何学
物理
机械工程
数学分析
经典力学
程序设计语言
教育学
心理学
作者
Mei Liu,Mingsheng Shang
标识
DOI:10.1109/tie.2023.3273253
摘要
Existing neural-network-based solutions for controlling a redundant robot are trapped by the relatively high computational complexity and the lack of the incorporation of orientation tracking. In order to remedy these two weaknesses, this paper proposes a new multi-criteria control scheme aided with a training-free dynamic neural network (DNN), which simultaneously considers the orientation-tracking constraint and physical constraints. Meanwhile, compared with existing methods for handling the same task, the proposed DNN solver is of low computational complexity. Theoretical analyses confirm that the proposed scheme based on the DNN solver globally and exponentially converges to the theoretical solution of the robotic motion generation. Besides, illustrative simulations and physical experiments based on a Franka Emika Panda manipulator demonstrate the validity and feasibility of the proposed scheme with the DNN solver.
科研通智能强力驱动
Strongly Powered by AbleSci AI