已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based multi-model approach on electron microscopy image of renal biopsy classification

人工智能 深度学习 卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 肾脏病理学 电子显微镜 特征提取 肾活检 活检 病理 医学 内科学 物理 光学
作者
Jingyuan Zhang,Aihua Zhang
出处
期刊:BMC Nephrology [BioMed Central]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12882-023-03182-6
摘要

Abstract Background Electron microscopy is important in the diagnosis of renal disease. For immune-mediated renal disease diagnosis, whether the electron-dense granule is present in the electron microscope image is of vital importance. Deep learning methods perform well at feature extraction and assessment of histologic images. However, few studies on deep learning methods for electron microscopy images of renal biopsy have been published. This study aimed to develop a deep learning-based multi-model to automatically detect whether the electron-dense granule is present in the TEM image of renal biopsy, and then help diagnose immune-mediated renal disease. Methods Three deep learning models are trained to classify whether the electron-dense granule is present using 910 electron microscopy images of renal biopsies. We proposed two novel methods to improve the model accuracy. One model uses the pre-trained ResNet convolutional layers for feature extraction with transfer learning which was firstly improved with skip architecture, then uses Support Vector Machine as the classifier. We developed a multi-model to combine the traditional ResNet model with the improved one to further improve the accuracy. Results Deep learning-based multi-model has the highest model accuracy, and the average accuracy is about 88%. The improved ReseNet + SVM model performance is much better than the traditional ResNet model. The average accuracy of the improved ResNet + SVM model is 83%, while the traditional ResNet model accuracy is only 58%. Conclusions This study presents the first models for electron microscopy image classification of Renal Biopsy. Identifying whether the electron-dense granule is present plays an important role in the diagnosis of immune complex nephropathy. This study made it possible for Artificial Intelligence models assist to analyze complex electron microscopy images for disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小球完成签到,获得积分10
1秒前
远方完成签到,获得积分10
1秒前
2秒前
3秒前
小球发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
bc举报奔铂儿钯求助涉嫌违规
10秒前
齐桉完成签到 ,获得积分10
11秒前
鳗鱼新之发布了新的文献求助10
12秒前
13秒前
14秒前
redamancy完成签到 ,获得积分10
16秒前
无亞发布了新的文献求助10
17秒前
南瓜猪猪头完成签到 ,获得积分10
18秒前
Zz完成签到 ,获得积分10
19秒前
20秒前
无花果应助木木杨采纳,获得10
21秒前
努力的小狗屁完成签到,获得积分10
24秒前
25秒前
瘦瘦慕凝发布了新的文献求助10
25秒前
Hou发布了新的文献求助10
30秒前
积极的凌波完成签到,获得积分10
31秒前
Xiomya关注了科研通微信公众号
31秒前
脑洞疼应助努力的小狗屁采纳,获得10
31秒前
得失心的诅咒完成签到 ,获得积分10
38秒前
Hao发布了新的文献求助10
38秒前
兰月满楼完成签到 ,获得积分10
38秒前
健脊护柱完成签到 ,获得积分10
39秒前
科研通AI5应助不可说采纳,获得10
40秒前
43秒前
ymr完成签到 ,获得积分10
46秒前
pandon2002完成签到,获得积分10
46秒前
Lynny完成签到 ,获得积分10
47秒前
爱笑梦易发布了新的文献求助10
49秒前
Hao完成签到,获得积分10
50秒前
51秒前
51秒前
郭京京完成签到 ,获得积分10
53秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827132
求助须知:如何正确求助?哪些是违规求助? 3369470
关于积分的说明 10456238
捐赠科研通 3089231
什么是DOI,文献DOI怎么找? 1699683
邀请新用户注册赠送积分活动 817463
科研通“疑难数据库(出版商)”最低求助积分说明 770239