亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas

计算机科学 卷积神经网络 交通拥挤 浮动车数据 流量(计算机网络) 智能交通系统 基于Kerner三相理论的交通拥堵重构 先进的交通管理系统 实时计算 深度学习 人工智能 运输工程 工程类 计算机网络
作者
Kadiyala Ramana,Gautam Srivastava,M. Rudra Kumar,Thippa Reddy Gadekallu,Jerry Chun‐Wei Lin,Mamoun Alazab,Celestine Iwendi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 3922-3934 被引量:38
标识
DOI:10.1109/tits.2022.3233801
摘要

Traffic problems continue to deteriorate because of increasing population in urban areas that rely on many modes of transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches, noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities because it helps reduce overall traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with Convolutional neural networks (CNN) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a traffic image is fed to a CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce fuel use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
科研通AI5应助无误采纳,获得10
13秒前
bc应助科研通管家采纳,获得20
15秒前
bc应助科研通管家采纳,获得20
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
万木春完成签到 ,获得积分10
21秒前
24秒前
无误发布了新的文献求助10
29秒前
32秒前
小蘑菇应助啊啊啊啊采纳,获得10
33秒前
blueblue发布了新的文献求助10
38秒前
blueblue完成签到,获得积分10
50秒前
54秒前
啊啊啊啊发布了新的文献求助10
58秒前
科研通AI5应助jyy采纳,获得30
1分钟前
乐乐应助皮皮蟹采纳,获得10
1分钟前
1分钟前
皮皮蟹发布了新的文献求助10
1分钟前
2分钟前
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
Jason发布了新的文献求助10
2分钟前
皮皮蟹完成签到,获得积分10
3分钟前
3分钟前
jyy发布了新的文献求助30
3分钟前
科研通AI5应助啊啊啊啊采纳,获得10
3分钟前
4分钟前
啊啊啊啊发布了新的文献求助10
4分钟前
hEbuy完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
Panther完成签到,获得积分10
6分钟前
丘比特应助科研通管家采纳,获得10
6分钟前
6分钟前
Wencher发布了新的文献求助10
6分钟前
所所应助Wencher采纳,获得10
6分钟前
chen关注了科研通微信公众号
6分钟前
今后应助张立人采纳,获得10
6分钟前
aoba完成签到 ,获得积分10
6分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804168
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341059
捐赠科研通 3065173
什么是DOI,文献DOI怎么找? 1682947
邀请新用户注册赠送积分活动 808557
科研通“疑难数据库(出版商)”最低求助积分说明 764600