Conserved Sites and Recognition Mechanisms of T1R1 and T2R14 Receptors Revealed by Ensemble Docking and Molecular Descriptors and Fingerprints Combined with Machine Learning

鲜味 对接(动物) 人工智能 朴素贝叶斯分类器 味觉感受器 品味 机器学习 化学 计算机科学 计算生物学 生物化学 生物 支持向量机 医学 护理部
作者
Zhiyong Cui,Ninglong Zhang,Tianxing Zhou,Xueke Zhou,Hengli Meng,Yanyang Yu,Zhiwei Zhang,Yin Zhang,Wenli Wang,Yuan Liu
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:71 (14): 5630-5645 被引量:35
标识
DOI:10.1021/acs.jafc.3c00591
摘要

Taste peptides, as an important component of protein-rich foodstuffs, potentiate the nutrition and taste of food. Thereinto, umami- and bitter-taste peptides have been ex tensively reported, while their taste mechanisms remain unclear. Meanwhile, the identification of taste peptides is still a time-consuming and costly task. In this study, 489 peptides with umami/bitter taste from TPDB (http://tastepeptides-meta.com/) were collected and used to train the classification models based on docking analysis, molecular descriptors (MDs), and molecular fingerprints (FPs). A consensus model, taste peptide docking machine (TPDM), was generated based on five learning algorithms (linear regression, random forest, gaussian naive bayes, gradient boosting tree, and stochastic gradient descent) and four molecular representation schemes. Model interpretive analysis showed that MDs (VSA_EState, MinEstateIndex, MolLogP) and FPs (598, 322, 952) had the greatest impact on the umami/bitter prediction of peptides. Based on the consensus docking results, we obtained the key recognition modes of umami/bitter receptors (T1Rs/T2Rs): (1) residues 107S-109S, 148S-154T, 247F-249A mainly form hydrogen bonding contacts and (2) residues 153A-158L, 163L, 181Q, 218D, 247F-249A in T1R1 and 56D, 106P, 107V, 152V-156F, 173K-180F in T2R14 constituted their hydrogen bond pockets. The model is available at http://www.tastepeptides-meta.com/yyds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kirirto发布了新的文献求助10
1秒前
张资阳完成签到,获得积分10
3秒前
xiaoxiaoliang发布了新的文献求助10
4秒前
4秒前
Xin完成签到,获得积分10
5秒前
6秒前
佳墨完成签到,获得积分10
6秒前
大花卷完成签到,获得积分10
7秒前
酷波er应助恍恍惚惚采纳,获得30
8秒前
Jasper应助dasfdufos采纳,获得30
9秒前
赵楠发布了新的文献求助10
9秒前
n-n完成签到,获得积分10
10秒前
Xin发布了新的文献求助10
11秒前
11秒前
小仓完成签到,获得积分10
13秒前
coconut完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
顾矜应助angelinazh采纳,获得10
20秒前
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
小白应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
ZhouYW应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
pluto应助科研通管家采纳,获得10
25秒前
平常的毛豆应助个性松采纳,获得10
25秒前
小白应助科研通管家采纳,获得10
25秒前
25秒前
丘比特应助科研通管家采纳,获得20
25秒前
25秒前
甜蜜嵩完成签到,获得积分10
27秒前
glj应助白嫖论文采纳,获得50
27秒前
27秒前
29秒前
星辰应助欢呼的寻双采纳,获得10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797577
求助须知:如何正确求助?哪些是违规求助? 3342959
关于积分的说明 10314242
捐赠科研通 3059647
什么是DOI,文献DOI怎么找? 1679045
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763093