The identification of a potential plasma metabolite marker for Alzheimer’s disease by LC-MS untargeted metabolomics

代谢组学 代谢物 化学 选择性反应监测 色谱法 痴呆 疾病 四极飞行时间 代谢组 药理学 质谱法 串联质谱法 内科学 生物化学 医学
作者
Chieh‐Hsin Lin,Yu‐Ning Lin,Hsien‐Yuan Lane,Chao‐Jung Chen
出处
期刊:Journal of Chromatography B [Elsevier BV]
卷期号:1222: 123686-123686 被引量:7
标识
DOI:10.1016/j.jchromb.2023.123686
摘要

Alzheimer's disease (AD), the most common type of dementia, is hard to recognize early, resulting in delayed treatment and poor outcome. At present, there is neither reliable, non-invasive methods to diagnose it accurately and nor effective drugs to recover it. Discovery and quantification of novel metabolite markers in plasma of AD patients and investigation of the correlation between the markers and AD assessment scores.Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics with LC-quadrupole- time-of-flight (Q-TOF) was performed in plasma samples of age-matched AD patients and healthy controls. The potential markers were further quantified with targeted multiple reaction monitoring (MRM) approach.Among the candidates, progesterone, and 3-indoleacetic acid (3-IAA) were successfully identified and then validated in 50 plasma samples from 25 AD patients and 25 matched normal controls with MRM approach. As a result, 3-IAA was significantly altered in AD patients and correlated with some AD assessment scores.By using untargeted LC-MS metabolomic and LC-MRM approaches to analyze plasma metabolites of AD patients and normal subjects, 3-IAA was discovered and quantified to be significantly altered in AD patients and correlated with several AD assessment scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的素完成签到,获得积分10
1秒前
2秒前
科研通AI5应助meiyangyang采纳,获得10
2秒前
3秒前
Lucas应助丙队长采纳,获得10
3秒前
游云发布了新的文献求助10
3秒前
打打应助Breeze01采纳,获得10
4秒前
大力青槐完成签到,获得积分20
4秒前
hena发布了新的文献求助10
4秒前
科研助手6应助Supreme采纳,获得10
5秒前
SciGPT应助如意草丛采纳,获得10
5秒前
孙不缺完成签到,获得积分10
6秒前
JamesPei应助舒适路人采纳,获得10
9秒前
司空元正完成签到 ,获得积分10
9秒前
10秒前
TheGala完成签到,获得积分10
11秒前
张小斌发布了新的文献求助10
11秒前
hena完成签到,获得积分10
12秒前
隐形曼青应助hhh采纳,获得10
12秒前
小天完成签到,获得积分10
13秒前
blaiteness完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
星星轨迹完成签到,获得积分10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
大模型应助妖孽宇采纳,获得10
16秒前
18秒前
果果发布了新的文献求助10
20秒前
dongdong发布了新的文献求助10
20秒前
科研通AI5应助舒适路人采纳,获得10
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786101
求助须知:如何正确求助?哪些是违规求助? 3331636
关于积分的说明 10251844
捐赠科研通 3046973
什么是DOI,文献DOI怎么找? 1672320
邀请新用户注册赠送积分活动 801243
科研通“疑难数据库(出版商)”最低求助积分说明 760059