DeepOCR: A multi-species deep-learning framework for accurate identification of open chromatin regions in livestock

计算机科学 牲畜 深度学习 人工智能 源代码 稳健性(进化) 机器学习 数据挖掘 生物 基因 遗传学 生态学 操作系统
作者
Liangwei Zhao,Ran Hao,Ziyi Chai,Weiwei Fu,Wei Yang,Chen Li,Quanzhong Liu,Yu Jiang
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:110: 108077-108077
标识
DOI:10.1016/j.compbiolchem.2024.108077
摘要

A wealth of experimental evidence has suggested that open chromatin regions (OCRs) are involved in many critical biological activities, such as DNA replication, enhancer activity, and gene transcription. Accurately identifying OCRs in livestock species can provide critical insights into the distribution and characteristics of OCRs for disease treatment in livestock, thereby improving animal welfare. However, most current machine-learning methods for OCR prediction were originally designed for a limited number of model organisms, such as humans and some model organisms, and thus their performance on non-model organisms, specifically livestock, is often unsatisfactory. To bridge this gap, we propose DeepOCR, a lightweight depth-separable residual network model for predicting OCRs in livestock, including chicken, cattle, and sheep. DeepOCR integrates a single convolution layer and two improved residue structure blocks to extract and learn important features from the input DNA sequences. A fully connected layer was also employed to further process the extracted features and improve the robustness of the entire network. Our benchmarking experiments demonstrated superior prediction performance of DeepOCR compared to state-of-the-art approaches on testing datasets of the three species. The source code of DeepOCR is freely available for academic purposes at https://github.com/jasonzhao371/DeepOCR/. We anticipate DeepOCR servers as a practical and reliable computational tool for OCR-related studies in livestock species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人耗子精完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
重要的道之完成签到,获得积分10
3秒前
羽言完成签到,获得积分10
3秒前
尘林完成签到,获得积分10
3秒前
4秒前
王Hope完成签到,获得积分10
5秒前
年轻千愁完成签到 ,获得积分10
5秒前
zzy完成签到,获得积分10
7秒前
wanci应助天行马采纳,获得10
8秒前
小蘑菇应助小帅采纳,获得10
9秒前
9秒前
广州城建职业技术学院完成签到,获得积分10
9秒前
9秒前
SAN发布了新的文献求助10
10秒前
kangshuai完成签到,获得积分10
10秒前
舒服的远望完成签到,获得积分10
10秒前
沉静青寒完成签到,获得积分10
10秒前
健忘鞋垫完成签到,获得积分10
11秒前
Jack完成签到,获得积分10
11秒前
任性的岱周完成签到,获得积分10
11秒前
mlle完成签到,获得积分10
11秒前
多罗罗完成签到,获得积分10
12秒前
小灰灰完成签到,获得积分0
13秒前
hhh123完成签到,获得积分10
14秒前
hfmaize111发布了新的文献求助10
14秒前
15秒前
15秒前
南城完成签到 ,获得积分10
15秒前
17秒前
17秒前
笨笨凡松完成签到 ,获得积分10
17秒前
mei完成签到,获得积分10
19秒前
kate完成签到,获得积分10
20秒前
NexusExplorer应助awang采纳,获得10
21秒前
haix应助以恒之心采纳,获得10
21秒前
gao完成签到 ,获得积分10
22秒前
小杨同学发布了新的文献求助10
22秒前
23秒前
路在脚下完成签到 ,获得积分10
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840982
求助须知:如何正确求助?哪些是违规求助? 3382969
关于积分的说明 10527271
捐赠科研通 3102843
什么是DOI,文献DOI怎么找? 1709028
邀请新用户注册赠送积分活动 822850
科研通“疑难数据库(出版商)”最低求助积分说明 773638