清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study

无线电技术 淋巴血管侵犯 列线图 医学 多中心研究 乳腺癌 放射科 超声波 肿瘤科 癌症 内科学 转移 随机对照试验
作者
Di Zhang,Wang Zhou,Wenwu Lu,Xiachuan Qin,Xian‐Ya Zhang,Junli Wang,Jun Wu,Yanhong Luo,Yayang Duan,Chaoxue Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (10): 3917-3928 被引量:2
标识
DOI:10.1016/j.acra.2024.04.010
摘要

Rationale and Objectives

The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC).

Materials and Methods

In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness.

Results

The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90–0.95), 0.91 (95% CI 0.87–0.95), and 0.91 (95% CI 0.86–0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI.

Conclusion

The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
JamesPei应助科研通管家采纳,获得10
17秒前
23秒前
juan完成签到 ,获得积分10
1分钟前
崔哥发布了新的文献求助10
1分钟前
慧姐完成签到,获得积分10
1分钟前
领导范儿应助慧姐采纳,获得10
2分钟前
back you up完成签到,获得积分0
2分钟前
王磊完成签到 ,获得积分10
2分钟前
崔哥完成签到,获得积分10
2分钟前
月儿完成签到 ,获得积分10
2分钟前
3分钟前
慧姐发布了新的文献求助10
3分钟前
开心完成签到 ,获得积分10
3分钟前
柯伊达完成签到 ,获得积分10
3分钟前
天天快乐应助dcm采纳,获得10
3分钟前
4分钟前
CipherSage应助WangY1263采纳,获得30
4分钟前
dcm发布了新的文献求助10
4分钟前
丁丁完成签到,获得积分10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
4分钟前
WangY1263发布了新的文献求助30
4分钟前
归海浩阑完成签到,获得积分10
4分钟前
充电宝应助dcm采纳,获得10
5分钟前
5分钟前
大树完成签到 ,获得积分10
5分钟前
lanbing802发布了新的文献求助10
5分钟前
星辰大海应助lanbing802采纳,获得10
5分钟前
gwbk完成签到,获得积分10
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
紫熊完成签到,获得积分10
6分钟前
6分钟前
dcm发布了新的文献求助10
6分钟前
6分钟前
binyao2024完成签到,获得积分10
6分钟前
WangY1263完成签到,获得积分10
6分钟前
7分钟前
lanbing802发布了新的文献求助10
7分钟前
大模型应助lanbing802采纳,获得10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234410
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994