Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle

真核细胞 师(数学) 细胞分裂 细胞周期 细胞 细胞生物学 神经科学 心理学 生物 遗传学 算术 数学
作者
Shreya Ramakanth,Taylor Kennedy,Berk Yalcinkaya,Sandhya Neupane,Nika Tadić,Nicolas E. Buchler,Orlando Argüello‐Miranda
标识
DOI:10.1101/2024.04.25.591211
摘要

Abstract The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle of Saccharomyces cerevisiae . We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interface Yeastvision provides free access to our image processing and single-cell tracking algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yin123发布了新的文献求助10
1秒前
君君发布了新的文献求助10
1秒前
朴实的哲瀚完成签到 ,获得积分10
1秒前
Yuu发布了新的文献求助10
1秒前
凉兮完成签到,获得积分20
1秒前
2秒前
xiayil完成签到,获得积分10
3秒前
奚斌完成签到,获得积分10
3秒前
内向代珊完成签到,获得积分10
3秒前
李健的粉丝团团长应助jun采纳,获得10
3秒前
Jiang发布了新的文献求助10
4秒前
于明玉发布了新的文献求助10
4秒前
hanxi发布了新的文献求助10
4秒前
李沐唅发布了新的文献求助10
4秒前
可爱的函函应助Daixi_Chen采纳,获得10
4秒前
5秒前
5秒前
许鸽完成签到,获得积分10
5秒前
SciGPT应助爱吃肥牛采纳,获得10
5秒前
打打应助合适苗条采纳,获得10
6秒前
6秒前
9秒前
9秒前
科研通AI5应助jh采纳,获得10
9秒前
10秒前
长情琦完成签到,获得积分10
10秒前
朴实水壶发布了新的文献求助10
11秒前
11秒前
12秒前
小赵sci发布了新的文献求助10
12秒前
prtrichor599完成签到,获得积分10
12秒前
枫影发布了新的文献求助10
13秒前
13秒前
我是老大应助solitude采纳,获得30
14秒前
隐形曼青应助Warren采纳,获得10
14秒前
14秒前
15秒前
jingerous完成签到,获得积分10
15秒前
Eve完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793907
求助须知:如何正确求助?哪些是违规求助? 3338811
关于积分的说明 10291822
捐赠科研通 3055276
什么是DOI,文献DOI怎么找? 1676456
邀请新用户注册赠送积分活动 804463
科研通“疑难数据库(出版商)”最低求助积分说明 761905