Symptom-based drug prediction of lifestyle-related chronic diseases using unsupervised machine learning techniques

聚类分析 本体论 计算机科学 机器学习 人工智能 医学 轮廓 药品 集合(抽象数据类型) 药理学 哲学 认识论 程序设计语言
作者
Sudipto Bhattacharjee,Banani Saha,Sudipto Saha
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108413-108413
标识
DOI:10.1016/j.compbiomed.2024.108413
摘要

Lifestyle-related diseases (LSDs) impose a substantial economic burden on patients and health care services. LSDs are chronic in nature and can directly affect the heart and lungs. Therapeutic interventions only based on symptoms can be crucial for prompt treatment initiation in LSDs, as symptoms are the first information available to clinicians. So, this work aims to apply unsupervised machine learning (ML) techniques for developing models to predict drugs from symptoms for LSDs, with a specific focus on pulmonary and heart diseases. The drug-disease and disease-symptom associations of 143 LSDs, 1271 drugs, and 305 symptoms were used to compute direct associations between drugs and symptoms. ML models with four different algorithms – K-Means, Bisecting K-Means, Mean Shift, and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) – were developed to cluster the drugs using symptoms as features. The optimal model was saved in a server for the development of a web application. A web application was developed to perform the prediction based on the optimal model. The Bisecting K-means model showed the best performance with a silhouette coefficient of 0.647 and generated 138 drug clusters. The drugs within the optimal clusters showed good similarity based on i) gene ontology annotations of the gene targets, ii) chemical ontology annotations, and iii) maximum common substructure of the drugs. In the web application, the model also provides a confidence score for each predicted drug while predicting from a new set of input symptoms. In summary, direct associations between drugs and symptoms were computed, and those were used to develop a symptom-based drug prediction tool for LSDs with unsupervised ML models. The ML-based prediction can provide a second opinion to clinicians to aid their decision-making for early treatment of LSD patients. The web application (URL - http://bicresources.jcbose.ac.in/ssaha4/sdldpred) can provide a simple interface for all end-users to perform the ML-based prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aaa完成签到,获得积分20
1秒前
chen完成签到,获得积分10
1秒前
bkagyin应助朴素的天蓉采纳,获得10
2秒前
大个应助郭mm采纳,获得10
2秒前
打打应助郭mm采纳,获得10
2秒前
3秒前
3秒前
剑门侠客完成签到,获得积分10
3秒前
3秒前
千空完成签到,获得积分10
4秒前
小呆呆发布了新的文献求助10
5秒前
打发打发的发到付电费完成签到,获得积分10
5秒前
Richardisme完成签到,获得积分10
6秒前
xiekunwhy完成签到,获得积分10
6秒前
hkh完成签到,获得积分10
6秒前
CipherSage应助殷少华采纳,获得10
7秒前
子车凡完成签到,获得积分10
8秒前
千空发布了新的文献求助10
8秒前
小红帽发布了新的文献求助10
8秒前
微笑寒烟完成签到,获得积分10
9秒前
gaga完成签到,获得积分10
10秒前
zy_完成签到,获得积分10
10秒前
调皮的凝旋完成签到,获得积分10
12秒前
怡然白竹完成签到 ,获得积分10
12秒前
huihui完成签到,获得积分10
12秒前
13秒前
FashionBoy应助尼莫采纳,获得10
14秒前
勤奋的天亦完成签到,获得积分10
14秒前
ni完成签到,获得积分10
15秒前
kongchao008完成签到,获得积分10
16秒前
满座完成签到,获得积分10
16秒前
科研通AI5应助小甜桶采纳,获得10
16秒前
黄紫红蓝完成签到,获得积分10
16秒前
sxqt完成签到,获得积分10
16秒前
zy完成签到,获得积分10
17秒前
17秒前
英俊的铭应助欣喜的香彤采纳,获得10
17秒前
17秒前
湛湛蓝完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Logical form: From GB to Minimalism 500
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4185217
求助须知:如何正确求助?哪些是违规求助? 3720948
关于积分的说明 11724691
捐赠科研通 3399264
什么是DOI,文献DOI怎么找? 1865144
邀请新用户注册赠送积分活动 922556
科研通“疑难数据库(出版商)”最低求助积分说明 834077