Reciprocal Teacher-Student Learning via Forward and Feedback Knowledge Distillation

计算机科学 互惠的 蒸馏 人机交互 多媒体 人工智能 哲学 语言学 化学 有机化学
作者
Jianmin Gou,Yu Chen,Baosheng Yu,Jinhua Liu,Lan Du,Shaohua Wan,Yi Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 7901-7916 被引量:20
标识
DOI:10.1109/tmm.2024.3372833
摘要

Knowledge distillation (KD) is a prevalent model compression technique in deep learning, aiming to leverage knowledge from a large teacher model to enhance the training of a smaller student model. It has found success in deploying compact deep models in intelligent applications like intelligent transportation, smart health, and distributed intelligence. Current knowledge distillation methods primarily fall into two categories: offline and online knowledge distillation. Offline methods involve a one-way distillation process, transferring unvaried knowledge from teacher to student, while online methods enable the simultaneous training of multiple peer students. However, existing knowledge distillation methods often face challenges where the student may not fully comprehend the teacher's knowledge due to model capacity gaps, and there might be knowledge incongruence among outputs of multiple students without teacher guidance. To address these issues, we propose a novel reciprocal teacher-student learning inspired by human teaching and examining through forward and feedback knowledge distillation (FFKD). Forward knowledge distillation operates offline, while feedback knowledge distillation follows an online scheme. The rationale is that feedback knowledge distillation enables the pre-trained teacher model to receive feedback from students, allowing the teacher to refine its teaching strategies accordingly. To achieve this, we introduce a new weighting constraint to gauge the extent of students' understanding of the teacher's knowledge, which is then utilized to enhance teaching strategies. Experimental results on five visual recognition datasets demonstrate that the proposed FFKD outperforms current state-of-the-art knowledge distillation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缺缺完成签到,获得积分10
刚刚
刚刚
kevin发布了新的文献求助10
1秒前
JamesPei应助小凉采纳,获得10
1秒前
Hhd完成签到,获得积分10
1秒前
点点发布了新的文献求助10
2秒前
helpme发布了新的文献求助20
2秒前
2秒前
呆萌诗翠发布了新的文献求助10
2秒前
田様应助EKo采纳,获得10
3秒前
飞飏完成签到,获得积分10
3秒前
chx2256120完成签到,获得积分10
4秒前
5秒前
5秒前
wbhou完成签到 ,获得积分10
5秒前
mescal完成签到,获得积分10
5秒前
zho发布了新的文献求助10
5秒前
5秒前
6秒前
xiaoxu发布了新的文献求助10
6秒前
慕青应助金闪闪采纳,获得10
6秒前
超帅沂完成签到,获得积分10
6秒前
诚心闭月发布了新的文献求助10
7秒前
HEAUBOOK举报HJY求助涉嫌违规
7秒前
sunglow11完成签到,获得积分0
7秒前
kevin完成签到,获得积分20
7秒前
鹿c3完成签到,获得积分10
7秒前
7秒前
HDJ完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
Lshyong完成签到 ,获得积分10
9秒前
生动幻莲完成签到,获得积分20
9秒前
风中老三完成签到,获得积分10
9秒前
9秒前
9秒前
留胡子的画板完成签到,获得积分10
10秒前
10秒前
缪甲烷完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349333
关于积分的说明 10343655
捐赠科研通 3065398
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764669