计算机科学
学习迁移
图形
自然语言处理
人工智能
理论计算机科学
作者
Fei Liu,Lele Sun,Weizhi Nie,Peiguang Jing,Peiguang Jing
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence
[Association for the Advancement of Artificial Intelligence (AAAI)]
日期:2024-03-24
卷期号:38 (8): 8769-8777
被引量:1
标识
DOI:10.1609/aaai.v38i8.28723
摘要
Cross-Domain Recommendation (CDR) has been proven to effectively alleviate the data sparsity problem in Recommender System (RS). Recent CDR methods often disentangle user features into domain-invariant and domain-specific features for efficient cross-domain knowledge transfer. Despite showcasing robust performance, three crucial aspects remain unexplored for existing disentangled CDR approaches: i) The significance nuances of the interaction behaviors are ignored in generating disentangled features; ii) The user features are disentangled irrelevant to the individual items to be recommended; iii) The general knowledge transfer overlooks the user's personality when interacting with diverse items. To this end, we propose a Graph Disentangled Contrastive framework for CDR (GDCCDR) with personalized transfer by meta-networks. An adaptive parameter-free filter is proposed to gauge the significance of diverse interactions, thereby facilitating more refined disentangled representations. In sight of the success of Contrastive Learning (CL) in RS, we propose two CL-based constraints for item-aware disentanglement. Proximate CL ensures the coherence of domain-invariant features between domains, while eliminatory CL strives to disentangle features within each domains using mutual information between users and items. Finally, for domain-invariant features, we adopt meta-networks to achieve personalized transfer. Experimental results on four real-world datasets demonstrate the superiority of GDCCDR over state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI