Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer

生物 胶质瘤 赖氨酰氧化酶 生物信息学 癌症 生物信息学 癌症研究 计算生物学 基因 遗传学 细胞外基质
作者
Qingyu Xu,Ling Ma,Alexander Streuer,Eva Altrock,Nanni Schmitt,Felicitas Rapp,Alessa Klär,Verena Nowak,Julia Obländer,Nadine Weimer,Iris Palme,Melda Göl,Honghu Zhu,Wolf-Karsten Hofmann,Daniel Nowak,Vladimir Riabov
出处
期刊:Cell Communication and Signaling [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12964-025-02176-1
摘要

Abstract Background Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensively evaluates LOX/LOXL expression in cancer and highlights cancer types where targeting these enzymes and developing LOX/LOXL-based prognostic models could have significant clinical relevance. Methods We assessed the association of LOX/LOXL expression with survival and drug sensitivity via analyzing public datasets (including bulk and single-cell RNA sequencing data of six datasets from Gene Expression Omnibus (GEO), Chinese Glioma Genome Atlas (CGGA) and Cancer Genome Atlas Program (TCGA)). We performed comprehensive machine learning-based bioinformatics analyses, including unsupervised consensus clustering, a total of 10 machine-learning algorithms for prognostic prediction and the Connectivity map tool for drug sensitivity prediction. Results The clinical significance of the LOX/LOXL family was evaluated across 33 cancer types. Overexpression of LOX/LOXL showed a strong correlation with tumor progression and poor survival, particularly in glioma. Therefore, we developed a novel prognostic model for glioma by integrating LOX/LOXL expression and its co-expressed genes. This model was highly predictive for overall survival in glioma patients, indicating significant clinical utility in prognostic assessment. Furthermore, our analysis uncovered a distinct LOXL2-overexpressing malignant cell population in recurrent glioma, characterized by activation of collagen, laminin, and semaphorin-3 pathways, along with enhanced epithelial-mesenchymal transition. Apart from glioma, our data revealed the role of LOXL3 overexpression in macrophages and in predicting the response to immune checkpoint blockade in bladder and renal cancers. Given the pro-tumor role of LOX/LOXL genes in most analyzed cancers, we identified potential therapeutic compounds, such as the VEGFR inhibitor cediranib, to target pan-LOX/LOXL overexpression in cancer. Conclusions Our study provides novel insights into the potential value of LOX/LOXL in cancer pathogenesis and treatment, and particularly its prognostic significance in glioma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱笑的蓝血完成签到,获得积分20
刚刚
小潘完成签到,获得积分10
1秒前
1秒前
coatguy发布了新的文献求助30
2秒前
wwwww完成签到,获得积分10
2秒前
善学以致用应助小梦采纳,获得10
2秒前
爱咋咋地完成签到 ,获得积分10
3秒前
creNdro发布了新的文献求助20
3秒前
5秒前
薛薛完成签到,获得积分10
5秒前
陈碧娴发布了新的文献求助10
6秒前
王之争霸发布了新的文献求助10
6秒前
付创完成签到,获得积分10
13秒前
LJ完成签到,获得积分20
13秒前
14秒前
15秒前
18秒前
19秒前
lagom完成签到,获得积分10
19秒前
独特的高山完成签到 ,获得积分10
20秒前
kiska发布了新的文献求助10
22秒前
小梦发布了新的文献求助10
22秒前
LJ发布了新的文献求助10
27秒前
烦恼都走开完成签到,获得积分10
29秒前
elsa完成签到,获得积分10
29秒前
Junanne完成签到,获得积分10
30秒前
32秒前
慕青应助kekekek采纳,获得10
32秒前
33秒前
33秒前
33秒前
古月发布了新的文献求助10
36秒前
河工大nature发表者完成签到 ,获得积分10
36秒前
snowy_owl发布了新的文献求助10
36秒前
大溺完成签到 ,获得积分10
38秒前
跑山猪发布了新的文献求助10
39秒前
勤劳弘文发布了新的文献求助10
39秒前
爱撒娇的橘子完成签到,获得积分10
39秒前
hanzhipad应助JasonSun采纳,获得10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841843
求助须知:如何正确求助?哪些是违规求助? 3383892
关于积分的说明 10531716
捐赠科研通 3104036
什么是DOI,文献DOI怎么找? 1709483
邀请新用户注册赠送积分活动 823291
科研通“疑难数据库(出版商)”最低求助积分说明 773873