Tiny CNN-Based Supervised Contrastive Learning for Seizure Prediction

计算机科学 人工智能 模式识别(心理学) 机器学习 语音识别
作者
Yongfeng Zhang,Hailing Feng,Shuai Wang,Hongbin Lv,Tiantian Xiao,Ziwei Wang,Yanna Zhao
出处
期刊:International Journal of Neural Systems [World Scientific]
标识
DOI:10.1142/s0129065725500340
摘要

Automatic seizure prediction based on ElectroEncephaloGraphy (EEG) ensures the safety of patients with epilepsy and mitigates anxiety. In recent years, significant progress has been made in this field. However, the predictive performance of existing methods encounters a bottleneck that is difficult to overcome. Moreover, there are certain limitations such as significant differences in prediction efficacy among patients or intricate model structures. Given these considerations, Siamese Network (SiaNet) and Triplet Network (TriNet) are proposed based on tiny convolutional neural network and supervised contrastive learning. Short-Time Fourier Transform (STFT) is first applied to the pre-processed data. Then data tuples are constructed and fed into the networks for training. Both networks try to minimize the interval between samples of the same class while maximize the interval between samples of different classes. The two networks consist of multiple branches with shared weights, which can learn from each other via contrastive learning. Promising results are obtained on the CHB-MIT and Siena datasets, with a total of 35 patients. Meanwhile, both models have only 19.351K parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的鱼完成签到,获得积分10
刚刚
刚刚
Xx发布了新的文献求助10
刚刚
科研通AI6应助张土豆采纳,获得10
刚刚
Lucas应助嗯对采纳,获得10
1秒前
xiaozhang完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助科研狗采纳,获得10
3秒前
dd关闭了dd文献求助
3秒前
3秒前
zmmm发布了新的文献求助10
3秒前
搜集达人应助WQ采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
kk完成签到,获得积分10
6秒前
WZL完成签到,获得积分10
8秒前
Jared应助坦率水香采纳,获得10
8秒前
上官若男应助416采纳,获得10
9秒前
不懂科研的小白完成签到,获得积分10
9秒前
研友_nxer7Z发布了新的文献求助10
10秒前
11秒前
11秒前
一个西藏发布了新的文献求助20
11秒前
汉堡包应助开心的西瓜采纳,获得10
13秒前
ZXD完成签到,获得积分10
13秒前
决明完成签到,获得积分20
14秒前
十伍完成签到 ,获得积分10
14秒前
14秒前
快乐芷荷完成签到 ,获得积分10
15秒前
xielunwen完成签到,获得积分10
15秒前
小二郎应助柒柒采纳,获得10
15秒前
17秒前
18秒前
19秒前
20秒前
杨123完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
墨客发布了新的文献求助30
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265