Rapid Identification of Chemical Compounds in Danzhi Jiangtang Capsule Using Ultra‐Performance Liquid Chromatography Quadrupole Time‐of‐Flight Mass Spectrometry Combined With Multiple Data Processing Techniques

化学 四极飞行时间 色谱法 质谱法 苯乙醇 飞行时间质谱 化学成分 糖苷 串联质谱法 离子 有机化学 电离
作者
Xiaojie Fu,Junting Zhou,Jindong Zhao,Rui Yang,An Zhou,Zhaohui Fang,Huan Wu
出处
期刊:Journal of Mass Spectrometry [Wiley]
卷期号:60 (5)
标识
DOI:10.1002/jms.5140
摘要

ABSTRACT Danzhi Jiangtang capsule (DJC) is a traditional Chinese medicine prescription that has been clinically used to treat Type 2 diabetes mellitus and its complications. However, research on the chemical compounds present in DJC remains limited. In this study, an analytical strategy based on ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) was developed for the rapid and systematic characterization of chemical compounds in DJC. Firstly, a DJC self‐built database was established, and UPLC‐Q‐TOF/MS was applied for comprehensive profiling of DJC's chemical compounds. Then, R language combined with MZmine was used for data preprocessing to construct the ion information list and extract effective data. Finally, the compounds were identified by multiple data processing techniques (multiple‐point screening mass defect filtering [MDF], extracted ion chromatogram [EIC], neutral loss filter [NLF], diagnostic fragment ion filtering [DFIF], and direct identification method [including retention time, fragment behavior and reference substances]). Eventually, 137 compounds were characterized from DJC, including 19 monoterpenoids, 26 triterpenoids, 8 flavonoids, 12 iridoids, 7 phenylethanoid glycosides, 8 acetophenones, 23 organic acids, 2 violet ketones, 13 cyclic peptides, 8 alkaloids, 2 fatty acids, and 9 other compounds. Among these, 16 compounds were verified using reference substances. The study indicated that the analytical strategy established in this study effectively supports the in‐depth study of DJC's chemical constituents and provides essential data for subsequent in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyc发布了新的文献求助10
刚刚
憨憨发布了新的文献求助10
刚刚
尧尧完成签到,获得积分20
刚刚
刚刚
呆呆完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助10
2秒前
frinkle完成签到,获得积分10
3秒前
小燕子发布了新的文献求助10
3秒前
FashionBoy应助非而者厚采纳,获得10
3秒前
科研通AI2S应助金戈采纳,获得10
3秒前
MS903发布了新的文献求助10
4秒前
WNX完成签到 ,获得积分10
4秒前
Dr_Ma发布了新的文献求助10
4秒前
5秒前
6秒前
沉静幻柏发布了新的文献求助10
7秒前
鱼鱼完成签到 ,获得积分10
7秒前
frinkle发布了新的文献求助10
7秒前
小马甲应助过时的哑铃采纳,获得10
8秒前
Fangdaidai完成签到 ,获得积分10
8秒前
9秒前
闪闪乘风完成签到 ,获得积分10
10秒前
科研通AI6应助Adam罗采纳,获得10
10秒前
叶叶应助冷酷的溜溜梅采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
一颗苹果完成签到 ,获得积分10
12秒前
kelexh发布了新的文献求助10
12秒前
Tangjianjian发布了新的文献求助10
13秒前
小马甲应助bemyselfelsa采纳,获得10
14秒前
我是老大应助方雪冰采纳,获得10
16秒前
昭蘅驳回了Ava应助
18秒前
赘婿应助Lucky采纳,获得10
19秒前
19秒前
shepherd应助方圆采纳,获得30
20秒前
20秒前
可爱的函函应助杨涵采纳,获得10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
传奇3应助GG波波采纳,获得10
23秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620901
求助须知:如何正确求助?哪些是违规求助? 4705561
关于积分的说明 14932483
捐赠科研通 4763831
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513822
关于科研通互助平台的介绍 1474715