External Validation of Population Pharmacokinetic Models of Lamotrigine in Patients with Epilepsy or Postneurosurgery

可预测性 拉莫三嗪 协变量 非金属 人口 贝叶斯概率 癫痫 基于生理学的药代动力学模型 加药 统计 计算机科学 计量经济学 医学 药代动力学 内科学 数学 环境卫生 精神科
作者
Yixin Jia,Jin Guo,Hua Yang,Qian Lu,Yong He,Zhigang Zhao,Shenghui Mei
出处
期刊:Therapeutic Drug Monitoring [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ftd.0000000000001322
摘要

Background: This study aimed to evaluate the predictive performance of published lamotrigine (LTG) population pharmacokinetic (PPK) models using an external data set of Chinese patients with epilepsy or postneurosurgery. Methods: In total, 348 concentration measurements from 94 Chinese children and 254 Chinese adults with epilepsy or postneurosurgery were used for external validation. Data on published LTG PPK models were obtained from the literature. The predictability of the models was assessed using prediction-based diagnostics (eg, F20 and F30), simulation-based diagnostics, and Bayesian forecasting. Results: The results of prediction-based diagnostics for all 10 models were unsatisfactory. The best-performing models, characterized as one-compartment models with nonlinear pharmacokinetics, incorporated weight as a key covariate and included interindividual variability for both clearance and volume of distribution. These models achieved exceptional predictive performance in simulation-based diagnostics and Bayesian forecasting, with IF 30 values of 90.32%, 97.23%, and 99.61%, respectively, demonstrating superior precision and accuracy. Bayesian forecasting improved the predictive accuracy of 80% of the models, significantly enhancing model predictability. Conclusions: The published PPK models show extensive variation in predictive performance for extrapolation among Chinese patients with epilepsy or postneurosurgery. The lack of key covariates (such as concomitant medications, genetic polymorphisms, and age stratification) and fixed parameters of volume of distribution and absorption rate constant in the PPK modeling of LTG may explain its unsatisfactory predictive performance. Bayesian forecasting significantly improves the model predictability and may help individualize LTG dosing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
打打应助迷路的初柔采纳,获得10
2秒前
2秒前
科研通AI6应助麦克阿宇采纳,获得10
2秒前
4秒前
小晃晃发布了新的文献求助10
5秒前
深情安青应助小橘子采纳,获得10
5秒前
5秒前
清脆飞机发布了新的文献求助10
5秒前
李健应助可爱小天才采纳,获得50
6秒前
6秒前
6秒前
Jiashuai发布了新的文献求助10
7秒前
ff完成签到,获得积分10
7秒前
无花果应助倪妮采纳,获得10
7秒前
shandianluwei发布了新的文献求助10
7秒前
甜甜雨安完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
活力的冬云完成签到,获得积分10
9秒前
搜集达人应助小汤采纳,获得10
9秒前
汉堡包应助wzc采纳,获得10
10秒前
11秒前
丘比特应助TOF采纳,获得10
11秒前
努力毕业ing完成签到,获得积分10
12秒前
光亮语梦发布了新的文献求助10
14秒前
田様应助这像话吗采纳,获得10
14秒前
bkagyin应助shandianluwei采纳,获得10
15秒前
15秒前
ZRR完成签到,获得积分10
17秒前
17秒前
17秒前
feb发布了新的文献求助20
18秒前
龙弟弟完成签到 ,获得积分10
20秒前
20秒前
小汤发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075598
求助须知:如何正确求助?哪些是违规求助? 4295360
关于积分的说明 13384177
捐赠科研通 4117030
什么是DOI,文献DOI怎么找? 2254637
邀请新用户注册赠送积分活动 1259275
关于科研通互助平台的介绍 1192040