External Validation of Population Pharmacokinetic Models of Lamotrigine in Patients with Epilepsy or Postneurosurgery

可预测性 拉莫三嗪 协变量 非金属 人口 贝叶斯概率 癫痫 基于生理学的药代动力学模型 加药 统计 计算机科学 计量经济学 医学 药代动力学 内科学 数学 环境卫生 精神科
作者
Yixin Jia,Jin Guo,Hua Yang,Qian Lu,Yong He,Zhigang Zhao,Shenghui Mei
出处
期刊:Therapeutic Drug Monitoring [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ftd.0000000000001322
摘要

Background: This study aimed to evaluate the predictive performance of published lamotrigine (LTG) population pharmacokinetic (PPK) models using an external data set of Chinese patients with epilepsy or postneurosurgery. Methods: In total, 348 concentration measurements from 94 Chinese children and 254 Chinese adults with epilepsy or postneurosurgery were used for external validation. Data on published LTG PPK models were obtained from the literature. The predictability of the models was assessed using prediction-based diagnostics (eg, F20 and F30), simulation-based diagnostics, and Bayesian forecasting. Results: The results of prediction-based diagnostics for all 10 models were unsatisfactory. The best-performing models, characterized as one-compartment models with nonlinear pharmacokinetics, incorporated weight as a key covariate and included interindividual variability for both clearance and volume of distribution. These models achieved exceptional predictive performance in simulation-based diagnostics and Bayesian forecasting, with IF 30 values of 90.32%, 97.23%, and 99.61%, respectively, demonstrating superior precision and accuracy. Bayesian forecasting improved the predictive accuracy of 80% of the models, significantly enhancing model predictability. Conclusions: The published PPK models show extensive variation in predictive performance for extrapolation among Chinese patients with epilepsy or postneurosurgery. The lack of key covariates (such as concomitant medications, genetic polymorphisms, and age stratification) and fixed parameters of volume of distribution and absorption rate constant in the PPK modeling of LTG may explain its unsatisfactory predictive performance. Bayesian forecasting significantly improves the model predictability and may help individualize LTG dosing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追梦路上的晓邢完成签到,获得积分10
刚刚
叮叮当当完成签到,获得积分10
2秒前
王翎力完成签到,获得积分10
8秒前
reset完成签到 ,获得积分10
12秒前
12秒前
cdercder应助科研通管家采纳,获得10
12秒前
wangrblzu应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
小龚完成签到 ,获得积分10
13秒前
25秒前
Hello应助开心的野狼采纳,获得10
28秒前
mufulee完成签到,获得积分10
33秒前
起个名不麻烦完成签到 ,获得积分10
40秒前
Mtx3098520564完成签到 ,获得积分10
50秒前
小牛完成签到 ,获得积分10
53秒前
木又完成签到 ,获得积分10
55秒前
大个应助T拐拐采纳,获得10
1分钟前
Kapur完成签到,获得积分10
1分钟前
1分钟前
落忆完成签到 ,获得积分10
1分钟前
1分钟前
xujunnan1987发布了新的文献求助10
1分钟前
金蛋蛋完成签到 ,获得积分10
1分钟前
always发布了新的文献求助10
1分钟前
爱爱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
yifei完成签到,获得积分10
1分钟前
105完成签到 ,获得积分10
1分钟前
1分钟前
无心的天真完成签到 ,获得积分10
1分钟前
T拐拐发布了新的文献求助10
1分钟前
CHENXIN532完成签到,获得积分10
1分钟前
微笑芒果完成签到 ,获得积分10
1分钟前
恒牙完成签到 ,获得积分10
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385599
关于积分的说明 10540781
捐赠科研通 3106177
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308