Designing AI-Based Work Processes: How the Timing of AI Advice Affects Diagnostic Decision Making

建议(编程) 计算机科学 工作(物理) 人工智能 数据科学 机器学习 管理科学 工程类 机械工程 程序设计语言
作者
Jiamin Yin,Kee Yuan Ngiam,Sharon Swee-Lin Tan,Hock‐Hai Teo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (11): 9361-9383 被引量:6
标识
DOI:10.1287/mnsc.2022.01454
摘要

Although clinical artificial intelligence (AI) systems can augment medical diagnosis decisions by providing competent second opinions, how to effectively integrate AI into routine diagnostic processes, such as when to present AI advice to human physicians, remains largely unexplored. Therefore, our research experimentally examines how the timing of AI advice affects diagnostic decision making using a think-aloud approach. Physicians perform medical diagnoses under three conditions: ex post advice (AI advice given after an initial diagnosis), ex ante advice (AI advice given concurrently with clinical information), and a control condition (no AI advice). Our results indicate that the timing of AI advice significantly affects diagnostic accuracy and calibration, with the ex post advice condition yielding the best performance and the control condition the worst. We then conduct several analyses to disentangle the underlying mechanism. We reveal that the superior diagnostic quality in the ex post advice condition can be attributed to more thorough clinical information processing and more active cognitive engagement with AI’s reasoning rationale. As a result, participants in the ex post advice condition are more capable of differentiating correct from incorrect AI advice than those in the ex ante advice condition. Additionally, they benefit more from high-quality AI advice that contradicts their initial diagnoses. To gain additional insights, we estimate the heterogeneous treatment effects based on physician and clinical case characteristics. Our findings underscore the importance of presenting AI advice at appropriate times during routine diagnostic processes to achieve successful decision augmentation with AI advice. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by the National University of Singapore [Grants Dean Strategic Fund - Health Informatics (HIIOT)/E and NSCP/ N-171-000-499-001] and the National Natural Science Foundation of China [Grant 72301279]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01454 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张大帅6666完成签到,获得积分10
1秒前
张大诚完成签到,获得积分10
1秒前
牛市棋手完成签到,获得积分10
2秒前
解语花发布了新的文献求助10
3秒前
sweetsbt发布了新的文献求助10
3秒前
英姑应助森鹿采纳,获得30
3秒前
xz完成签到 ,获得积分10
3秒前
小马甲应助Chester采纳,获得10
4秒前
芭蕾恰恰舞完成签到,获得积分10
4秒前
汉天完成签到,获得积分10
4秒前
七月发布了新的文献求助10
5秒前
蜜桃小丸子完成签到 ,获得积分10
5秒前
wuming完成签到,获得积分10
5秒前
...完成签到,获得积分10
5秒前
8秒前
8秒前
dxxcshin完成签到,获得积分10
8秒前
10秒前
深情映萱关注了科研通微信公众号
10秒前
完美世界应助司佳雨采纳,获得10
11秒前
科研通AI6应助颜朗采纳,获得10
12秒前
科研通AI6应助七月采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
Young应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
寻道图强应助科研通管家采纳,获得30
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
大龙哥886应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
称心万言完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830