Designing AI-Based Work Processes: How the Timing of AI Advice Affects Diagnostic Decision Making

建议(编程) 计算机科学 工作(物理) 人工智能 数据科学 机器学习 管理科学 工程类 机械工程 程序设计语言
作者
Jiamin Yin,Kee Yuan Ngiam,Sharon Swee-Lin Tan,Hock‐Hai Teo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:3
标识
DOI:10.1287/mnsc.2022.01454
摘要

Although clinical artificial intelligence (AI) systems can augment medical diagnosis decisions by providing competent second opinions, how to effectively integrate AI into routine diagnostic processes, such as when to present AI advice to human physicians, remains largely unexplored. Therefore, our research experimentally examines how the timing of AI advice affects diagnostic decision making using a think-aloud approach. Physicians perform medical diagnoses under three conditions: ex post advice (AI advice given after an initial diagnosis), ex ante advice (AI advice given concurrently with clinical information), and a control condition (no AI advice). Our results indicate that the timing of AI advice significantly affects diagnostic accuracy and calibration, with the ex post advice condition yielding the best performance and the control condition the worst. We then conduct several analyses to disentangle the underlying mechanism. We reveal that the superior diagnostic quality in the ex post advice condition can be attributed to more thorough clinical information processing and more active cognitive engagement with AI’s reasoning rationale. As a result, participants in the ex post advice condition are more capable of differentiating correct from incorrect AI advice than those in the ex ante advice condition. Additionally, they benefit more from high-quality AI advice that contradicts their initial diagnoses. To gain additional insights, we estimate the heterogeneous treatment effects based on physician and clinical case characteristics. Our findings underscore the importance of presenting AI advice at appropriate times during routine diagnostic processes to achieve successful decision augmentation with AI advice. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by the National University of Singapore [Grants Dean Strategic Fund - Health Informatics (HIIOT)/E and NSCP/ N-171-000-499-001] and the National Natural Science Foundation of China [Grant 72301279]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01454 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
赘婿应助回答采纳,获得10
2秒前
解洙完成签到 ,获得积分10
3秒前
瑜軒发布了新的文献求助10
4秒前
huanir99完成签到,获得积分10
5秒前
橘子发布了新的文献求助10
6秒前
yalin发布了新的文献求助10
6秒前
爆米花应助kingripple采纳,获得10
8秒前
8秒前
8秒前
yalin完成签到,获得积分10
11秒前
拂晓发布了新的文献求助10
13秒前
14秒前
三岁半完成签到 ,获得积分10
18秒前
20秒前
21秒前
23秒前
LIU完成签到 ,获得积分10
24秒前
李爱国应助拂晓采纳,获得10
24秒前
左丘秋尽发布了新的文献求助10
26秒前
AoAoo发布了新的文献求助10
26秒前
luoxiu发布了新的文献求助10
27秒前
小明应助TS采纳,获得10
27秒前
ephore应助优美火车采纳,获得30
29秒前
林希孟完成签到 ,获得积分10
29秒前
scott_zip发布了新的文献求助10
33秒前
憨批发布了新的文献求助10
33秒前
34秒前
lg20010419完成签到,获得积分10
35秒前
王玉杰发布了新的文献求助10
37秒前
37秒前
妖精完成签到 ,获得积分10
38秒前
个性凡儿完成签到,获得积分10
40秒前
士多啤梨发布了新的文献求助10
41秒前
43秒前
桐桐应助婧婧采纳,获得10
44秒前
45秒前
46秒前
士多啤梨完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4771335
求助须知:如何正确求助?哪些是违规求助? 4106161
关于积分的说明 12701969
捐赠科研通 3825378
什么是DOI,文献DOI怎么找? 2110874
邀请新用户注册赠送积分活动 1135042
关于科研通互助平台的介绍 1017134