清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Designing AI-Based Work Processes: How the Timing of AI Advice Affects Diagnostic Decision Making

建议(编程) 计算机科学 工作(物理) 人工智能 数据科学 机器学习 管理科学 工程类 机械工程 程序设计语言
作者
Jiamin Yin,Kee Yuan Ngiam,Sharon Swee-Lin Tan,Hock‐Hai Teo
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (11): 9361-9383 被引量:6
标识
DOI:10.1287/mnsc.2022.01454
摘要

Although clinical artificial intelligence (AI) systems can augment medical diagnosis decisions by providing competent second opinions, how to effectively integrate AI into routine diagnostic processes, such as when to present AI advice to human physicians, remains largely unexplored. Therefore, our research experimentally examines how the timing of AI advice affects diagnostic decision making using a think-aloud approach. Physicians perform medical diagnoses under three conditions: ex post advice (AI advice given after an initial diagnosis), ex ante advice (AI advice given concurrently with clinical information), and a control condition (no AI advice). Our results indicate that the timing of AI advice significantly affects diagnostic accuracy and calibration, with the ex post advice condition yielding the best performance and the control condition the worst. We then conduct several analyses to disentangle the underlying mechanism. We reveal that the superior diagnostic quality in the ex post advice condition can be attributed to more thorough clinical information processing and more active cognitive engagement with AI’s reasoning rationale. As a result, participants in the ex post advice condition are more capable of differentiating correct from incorrect AI advice than those in the ex ante advice condition. Additionally, they benefit more from high-quality AI advice that contradicts their initial diagnoses. To gain additional insights, we estimate the heterogeneous treatment effects based on physician and clinical case characteristics. Our findings underscore the importance of presenting AI advice at appropriate times during routine diagnostic processes to achieve successful decision augmentation with AI advice. This paper was accepted by Anindya Ghose, information systems. Funding: This work was supported by the National University of Singapore [Grants Dean Strategic Fund - Health Informatics (HIIOT)/E and NSCP/ N-171-000-499-001] and the National Natural Science Foundation of China [Grant 72301279]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.01454 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tad81完成签到,获得积分10
12秒前
小二郎应助ppf采纳,获得10
23秒前
王佳亮完成签到,获得积分10
28秒前
火星上的雨柏完成签到 ,获得积分10
29秒前
秋秋完成签到 ,获得积分10
36秒前
36秒前
ceeray23发布了新的文献求助20
37秒前
徐团伟完成签到 ,获得积分10
37秒前
coolplex完成签到 ,获得积分10
44秒前
莃莃莃喜欢你完成签到 ,获得积分10
44秒前
李健的小迷弟应助ceeray23采纳,获得20
45秒前
桐桐应助ceeray23采纳,获得20
49秒前
57秒前
t铁核桃1985完成签到 ,获得积分0
57秒前
点点完成签到 ,获得积分10
59秒前
59秒前
ppf发布了新的文献求助10
1分钟前
1分钟前
空儒完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
1分钟前
lsl完成签到 ,获得积分10
1分钟前
Criminology34应助CXS采纳,获得10
1分钟前
Tree_QD完成签到 ,获得积分10
1分钟前
无极2023完成签到 ,获得积分10
1分钟前
仙女完成签到 ,获得积分10
1分钟前
1分钟前
kittykitten完成签到 ,获得积分10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
爆米花应助ppf采纳,获得10
2分钟前
正直的夏真完成签到 ,获得积分10
2分钟前
2分钟前
慕豁发布了新的文献求助10
2分钟前
2分钟前
科科通通完成签到,获得积分10
2分钟前
慕豁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yushiolo完成签到 ,获得积分10
3分钟前
ppf发布了新的文献求助10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551