Contradicted in Reliable, Replicated in Unreliable: Dual-Source Reference for Fake News Early Detection

对偶(语法数字) 计算机科学 假新闻 互联网隐私 语言学 哲学
作者
Yifan Feng,Weimin Li,Yue Wang,Jingchao Wang,Fangfang Liu,Zhongming Han
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (22): 23896-23904
标识
DOI:10.1609/aaai.v39i22.34562
摘要

Early detection of fake news is crucial to mitigate its negative impact. Current research in fake news detection often utilizes the difference between real and fake news regarding the support degree from reliable sources. However, it has overlooked their different semantic outlier degrees among unreliable source information during the same period. Since fake news often serves idea propaganda, unreliable sources usually publish a lot of information with the same propaganda idea during the same period, making it less likely to be a semantic outlier. To leverage this difference, we propose the Reliable-Unreliable Source Reference (RUSR) Fake News Early Detection Method. RUSR introduces the publication background for detected news, which consists of related news with common main objects of description and slightly earlier publication from both reliable and unreliable sources. Furthermore, we develop a strongly preference-driven support degree evaluation model and a two-hop semantic outlier degree evaluation model, which respectively mitigate the interference of news with weak validation effectiveness and the tightness degree of semantic cluster. The designed redistribution module and expanding range relative time encoding are adopted by both models, respectively optimizing early checkpoint of training and expressing the relevance of news implied by their release time gap. Finally, we present a multi-model mutual benefit and collaboration framework that enables the multi-model mutual benefit of generalization in training and multi-perspective prediction of news authenticity in inference. Experiments on our newly constructed dataset demonstrate the superiority of RUSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的蓝完成签到,获得积分10
刚刚
刚刚
刚刚
期待完成签到,获得积分10
1秒前
万能图书馆应助张伟采纳,获得10
2秒前
NexusExplorer应助M先生采纳,获得30
5秒前
赘婿应助沉醉的中国钵采纳,获得10
6秒前
7秒前
Mark完成签到,获得积分10
8秒前
JamesPei应助夹子方糖采纳,获得10
8秒前
针尖上的王子完成签到,获得积分10
9秒前
杨杨杨完成签到,获得积分10
10秒前
11秒前
zheng发布了新的文献求助10
13秒前
pkouji应助润润润采纳,获得70
14秒前
Mark发布了新的文献求助10
15秒前
追寻惜萱完成签到 ,获得积分10
15秒前
科研通AI5应助读文献啦采纳,获得10
15秒前
15秒前
你好纠结伦完成签到,获得积分10
16秒前
16秒前
你大夫哥完成签到,获得积分10
17秒前
猪猪hero应助飘逸鑫采纳,获得10
18秒前
发发发发发完成签到,获得积分20
18秒前
tramp应助欢呼败采纳,获得10
19秒前
19秒前
良辰应助嘻嘻哈哈眼药水采纳,获得10
19秒前
20秒前
20秒前
20秒前
21秒前
23秒前
李爱国应助缥缈的铅笔采纳,获得10
24秒前
24秒前
烟花应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
25秒前
壮观的衫完成签到,获得积分10
25秒前
田様应助科研通管家采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815115
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10400037
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689964
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642