Remote Sensing Small Object Detection Network Based on Multi-Scale Feature Extraction and Information Fusion

计算机科学 特征(语言学) 判别式 水准点(测量) 目标检测 人工智能 特征提取 数据挖掘 骨干网 对象(语法) 模式识别(心理学) 大地测量学 计算机网络 语言学 哲学 地理
作者
Junsuo Qu,Tong Liu,Zongbing Tang,Yifei Duan,H Yao,Jiao Hu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (5): 913-913 被引量:2
标识
DOI:10.3390/rs17050913
摘要

Nowadays, object detection algorithms are widely used in various scenarios. However, there are further small object detection requirements in some special scenarios. Due to the problems related to small objects, such as their less available features, unbalanced samples, higher positioning accuracy requirements, and fewer data sets, a small object detection algorithm is more complex than a general object detection algorithm. The detection effect of the model for small objects is not ideal. Therefore, this paper takes YOLOXs as the benchmark network and enhances the feature information on small objects by improving the network’s structure so as to improve the detection effect of the model for small objects. This specific research is presented as follows: Aiming at the problem of a neck network based on an FPN and its variants being prone to information loss in the feature fusion of non-adjacent layers, this paper proposes a feature fusion and distribution module, which replaces the information transmission path, from deep to shallow, in the neck network of YOLOXs. This method first fuses and extracts the feature layers used by the backbone network for prediction to obtain global feature information containing multiple-size objects. Then, the global feature information is distributed to each prediction branch to ensure that the high-level semantic and fine-grained information are more efficiently integrated so as to help the model effectively learn the discriminative information on small objects and classify them correctly. Finally, after testing on the VisDrone2021 dataset, which corresponds to a standard image size of 1080p (1920 × 1080), the resolution of each image is high and the video frame rate contained in the dataset is usually 30 frames/second (fps), with a high resolution in time, it can be used to detect objects of various sizes and for dynamic object detection tasks. And when we integrated the module into a YOLOXs network (named the FE-YOLO network) with the three improvement points of the feature layer, channel number, and maximum pool, the mAP and APs were increased by 1.0% and 0.8%, respectively. Compared with YOLOV5m, YOLOV7-Tiny, FCOS, and other advanced models, it can obtain the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qwq完成签到,获得积分10
2秒前
JamesPei应助王二萌采纳,获得10
2秒前
李健的小迷弟应助小明采纳,获得10
3秒前
情怀应助清秀迎彤采纳,获得10
3秒前
3秒前
4秒前
Spike完成签到,获得积分10
4秒前
易今发布了新的文献求助10
4秒前
Owen应助李升洋采纳,获得10
4秒前
典雅的彤发布了新的文献求助10
4秒前
秋秋秋发布了新的文献求助10
4秒前
JINtian发布了新的文献求助10
4秒前
5秒前
PubMed556发布了新的文献求助10
5秒前
6秒前
搞怪柏柳完成签到 ,获得积分10
7秒前
Akim应助温暖芒果采纳,获得10
8秒前
SHR3136发布了新的文献求助10
9秒前
LSC完成签到,获得积分10
10秒前
hxliu发布了新的文献求助10
10秒前
zhaoyi发布了新的文献求助10
10秒前
欣慰的乐荷完成签到,获得积分20
10秒前
TZMY发布了新的文献求助10
11秒前
11秒前
12秒前
bonnie完成签到,获得积分10
12秒前
完美世界应助落后满天采纳,获得30
13秒前
量子星尘发布了新的文献求助10
14秒前
Heyu完成签到 ,获得积分10
14秒前
YIFGU完成签到 ,获得积分10
14秒前
咸鱼发布了新的文献求助10
14秒前
15秒前
Harssi发布了新的文献求助10
18秒前
18秒前
19秒前
我是老大应助典雅的彤采纳,获得30
19秒前
19秒前
李华完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764