Predicting Spatial Transcriptomics from H&E Image by Pretrained Contrastive Alignment Learning

计算机科学 人工智能 模式识别(心理学) 计算机视觉
作者
Jiawei Zou,Kai Xiao,Zung-Chung Chen,Jian Pei,Jing Xu,Tao Chen,Likun Hou,Chunyan Wu,Yunlang She,Zhiyuan Yuan,Luonan Chen
标识
DOI:10.1101/2025.06.15.659438
摘要

Abstract The intricate molecular landscape within tissues holds crucial information about cellular behavior and disease progression, yet capturing this complexity at a spatial level remains challenging. While Spatial transcriptomics (ST) offers valuable insights into gene expression patterns within their native tissue context, its widespread adoption is hindered by high costs and limited gene detection capabilities. Here we introduce CarHE (Contrastive Alignment of gene expRession for hematoxylin and eosin image), a method that overcomes these limitations by accurately predicting high-dimensional ST data (over 10,000 genes) solely from readily available H&E (Hematoxylin and Eosin) stained images. This novel pre-trained architecture employs contrastive learning through two mechanisms: cell-type-based transcriptomics information transfer and image-based histology information transfer. These mechanisms precisely align image features with spatial single-cell gene expressions, achieving prediction accuracies exceeding 0.7 (up to 1.7 folds compared to second best) across diverse tissue types and species. CarHE’s superior performance extends to identifying subtle pathological features such as tertiary lymphoid structures in various cancers, including breast cancer, lung cancer, melanoma and ccRCC (clear cell renal cell carcinoma), and reconstructing 3D spatial transcriptomics from images alone, offering a cost-effective and robust alternative for large-scale spatial transcriptomics. We further validated CarHE’s effectiveness by predicting DFS (Disease-Free Survival) from >1,600 lung cancer patients HE images, achieving a significantly higher AUC (Area Under the Receiver Operating Characteristic Curve) of 0.73 compared to state-of-the-art alternatives (0.58-0.64).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuihaodewomen完成签到 ,获得积分10
刚刚
刚刚
塔巴德完成签到,获得积分10
1秒前
清秀凡霜完成签到,获得积分10
1秒前
1秒前
眯眯眼的鞋垫完成签到,获得积分10
2秒前
熠熠完成签到,获得积分10
2秒前
4秒前
单纯黑米完成签到,获得积分10
4秒前
马登完成签到,获得积分10
4秒前
加加知发布了新的文献求助10
4秒前
5秒前
zjw完成签到 ,获得积分10
7秒前
夹夹完成签到,获得积分10
7秒前
9秒前
10秒前
一定accept完成签到 ,获得积分10
10秒前
wzz发布了新的文献求助10
11秒前
点心发布了新的文献求助30
12秒前
嗯哼完成签到 ,获得积分10
13秒前
13秒前
14秒前
杨杨杨完成签到,获得积分10
14秒前
echo完成签到,获得积分10
14秒前
Ava应助塔巴德采纳,获得10
14秒前
共享精神应助加加知采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
cici0707应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
丰富的慕卉完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109