Optimizing an On-Demand Delivery Mode Based on Trucks and Drones

卡车 无人机 转运(资讯保安) 运输工程 模式(计算机接口) 整数规划 订单(交换) 比例(比率) 运筹学 计算机科学 工程类 业务 汽车工程 算法 物理 操作系统 生物 量子力学 遗传学 财务
作者
Lu Zhen,Jiajing Gao,Shuaian Wang,Gilbert Laporte,Xiaohang Yue
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:59 (5): 1008-1031 被引量:5
标识
DOI:10.1287/trsc.2024.0693
摘要

We explore a novel on-demand delivery mode based on cooperation between trucks and drones. A fleet of trucks, each of which carries several drones, travels along a closed-loop route, and the drones are launched from the trucks to pick up (or deliver) ordered parcels from their origin (or to their destination). The fulfillment of an order (i.e., delivering the parcel from its origin to its destination) includes three steps: pick up by a drone, transport by a truck, and delivery by a drone. We investigate how to fulfill all of the orders in one batch in order to minimize the total operational cost. We build a mixed-integer programming (MIP) model for this new on-demand delivery system in a network of multiple routes with transshipment. For drones, the assignment decision regarding the fulfillment stages for the orders and the location decision regarding the launching from and landing onto trucks are optimized by the proposed MIP model. An exact branch-and-price algorithm is designed to efficiently solve the model on large-scale instances. We validate the advantages of our algorithm in terms of computing time and solution quality through experiments on both artificial and real data. We validate the benefits of both implementing this new delivery mode and allowing transshipments among routes using a drone to serve multiple orders in one flying trip and consolidating orders. We also investigate the influences of the number of drones, speed, endurance time, unit penalty cost, and the geographic distribution of orders on the system’s operational cost. Funding: This research was supported by the National Natural Science Foundation of China [Grants 72025103, 72394360, 72394362, 72361137001, and 7237122]; the China Postdoctoral Science Foundation [Grant 2024M761921]; the Project of Science and Technology Commission of Shanghai Municipality China [Grant 23JC1402200]; and the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0693 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助夏xx采纳,获得10
刚刚
NexusExplorer应助开元采纳,获得10
1秒前
一叶扁舟完成签到,获得积分10
2秒前
3秒前
ZOE应助hhh采纳,获得30
3秒前
xiaonie完成签到,获得积分10
4秒前
Lycerdoctor发布了新的文献求助10
4秒前
KingYugene完成签到,获得积分10
5秒前
7秒前
8秒前
xiaonie发布了新的文献求助10
9秒前
迷路静丹发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
111完成签到,获得积分10
12秒前
思源应助后来采纳,获得10
12秒前
旦皋发布了新的文献求助10
14秒前
15秒前
15秒前
思源应助夏xx采纳,获得10
16秒前
红烧驱逐舰完成签到,获得积分10
17秒前
17秒前
17秒前
落后的大叔完成签到,获得积分10
19秒前
aoao发布了新的文献求助10
19秒前
20秒前
729发布了新的文献求助10
21秒前
waihang完成签到,获得积分10
21秒前
kk发布了新的文献求助10
22秒前
22秒前
科研通AI2S应助烟酒不离生采纳,获得10
23秒前
打打应助aabc采纳,获得10
23秒前
摩天轮完成签到 ,获得积分10
25秒前
飞翔的小鸟完成签到 ,获得积分10
25秒前
柠檬不吃酸完成签到 ,获得积分10
25秒前
26秒前
JamesPei应助贤惠的玉米采纳,获得30
26秒前
lys完成签到,获得积分20
27秒前
27秒前
追光少年发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736544
求助须知:如何正确求助?哪些是违规求助? 5366624
关于积分的说明 15333378
捐赠科研通 4880340
什么是DOI,文献DOI怎么找? 2622818
邀请新用户注册赠送积分活动 1571719
关于科研通互助平台的介绍 1528544