Optimizing an On-Demand Delivery Mode Based on Trucks and Drones

卡车 无人机 转运(资讯保安) 运输工程 模式(计算机接口) 整数规划 订单(交换) 比例(比率) 运筹学 计算机科学 工程类 业务 汽车工程 算法 量子力学 财务 物理 操作系统 生物 遗传学
作者
Lu Zhen,Jiajing Gao,Shuaian Wang,Gilbert Laporte,Xiaohang Yue
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/trsc.2024.0693
摘要

We explore a novel on-demand delivery mode based on cooperation between trucks and drones. A fleet of trucks, each of which carries several drones, travels along a closed-loop route, and the drones are launched from the trucks to pick up (or deliver) ordered parcels from their origin (or to their destination). The fulfillment of an order (i.e., delivering the parcel from its origin to its destination) includes three steps: pick up by a drone, transport by a truck, and delivery by a drone. We investigate how to fulfill all of the orders in one batch in order to minimize the total operational cost. We build a mixed-integer programming (MIP) model for this new on-demand delivery system in a network of multiple routes with transshipment. For drones, the assignment decision regarding the fulfillment stages for the orders and the location decision regarding the launching from and landing onto trucks are optimized by the proposed MIP model. An exact branch-and-price algorithm is designed to efficiently solve the model on large-scale instances. We validate the advantages of our algorithm in terms of computing time and solution quality through experiments on both artificial and real data. We validate the benefits of both implementing this new delivery mode and allowing transshipments among routes using a drone to serve multiple orders in one flying trip and consolidating orders. We also investigate the influences of the number of drones, speed, endurance time, unit penalty cost, and the geographic distribution of orders on the system’s operational cost. Funding: This research was supported by the National Natural Science Foundation of China [Grants 72025103, 72394360, 72394362, 72361137001, and 7237122]; the China Postdoctoral Science Foundation [Grant 2024M761921]; the Project of Science and Technology Commission of Shanghai Municipality China [Grant 23JC1402200]; and the Research Grants Council of the Hong Kong Special Administrative Region, China [Grant HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0693 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
考拉完成签到,获得积分10
刚刚
刚刚
刚刚
浮游应助无私的以云采纳,获得10
刚刚
刚刚
1秒前
白小橘完成签到 ,获得积分10
1秒前
金桔儿完成签到,获得积分20
2秒前
科研通AI5应助乐观的店员采纳,获得10
2秒前
苹果以云完成签到,获得积分10
2秒前
傅剑寒完成签到,获得积分10
2秒前
2秒前
yw完成签到,获得积分10
2秒前
充电宝应助我是大皇帝采纳,获得10
3秒前
英姑应助Amber采纳,获得10
3秒前
椰子狗发布了新的文献求助150
3秒前
研友_r8YKvn完成签到,获得积分10
3秒前
4秒前
俊逸的凝珍完成签到,获得积分10
4秒前
研友_想想发布了新的文献求助10
5秒前
CipherSage应助阳光青文采纳,获得10
5秒前
clover发布了新的文献求助10
5秒前
小马甲应助King采纳,获得10
5秒前
科研通AI2S应助唐胜利采纳,获得10
5秒前
跑山猪发布了新的文献求助10
5秒前
linyue发布了新的文献求助10
5秒前
5秒前
5秒前
空空完成签到,获得积分10
5秒前
pluto应助好困采纳,获得50
6秒前
6秒前
刘恩瑜关注了科研通微信公众号
6秒前
懒洋洋发布了新的文献求助10
6秒前
宇宙的宇完成签到,获得积分10
7秒前
7秒前
rainbow5432完成签到 ,获得积分10
8秒前
8秒前
8秒前
Aseaxin完成签到 ,获得积分10
8秒前
baill完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347