Lung cancer dose distribution prediction based on a dual‐branch feature extraction network

计算机科学 人工神经网络 特征提取 人工智能 特征(语言学) 模式识别(心理学) 放射治疗 卷积神经网络 均方误差 放射治疗计划 核医学 数学 医学 统计 放射科 哲学 语言学
作者
Haifeng Zhang,Yong-Xin Liu,Yanjun Yu,Fuli Zhang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17775
摘要

Currently, predicting dose distributions through neural networks can improve the automation level of radiotherapy planning. However, a single neural network often has limitations in its ability to extract features and obtain clinical information. To assist in the development of volumetric modulated arc therapy (VMAT) plans for non-small cell lung cancer (NSCLC) patients, a dual-branch feature extraction neural network is proposed to predict dose distributions. This study proposes a dual-branch feature extraction network named CTNet, which consists of a convolutional network and a transformer network in parallel to extract local and global features that are meaningful for dose prediction tasks. A feature fusion module has been developed to reduce the heterogeneity of the two extracted features. To promote the learning of two types of features in the network, weighted mean square error and multiscale structural loss were used. The network was trained on 144 VMAT plans of NSCLC patients. The performance of this network was compared with that of several commonly used networks, and the network performance was evaluated on the basis of the voxel-level mean absolute error (MAE) within the planning target volume (PTV) and organs at risk (OARs), as well as the error in clinical dose‒volume metrics. The MAE between the predicted dose distribution and the manually planned dose distribution within the PTV was 1.14 Gy, and the D95 error was less than 1 Gy. Compared with the other four commonly used networks, the dose error of the CTNet was the smallest in the PTV and OARs. The proposed CTNet uses the transformer and convolutional networks to extract global information, such as the relative position of the PTV and OARs, as well as local information, such as shape and size, enabling accurate prediction of the dose distribution for NSCLC patients undergoing VMAT radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大志完成签到,获得积分20
4秒前
发文章12138完成签到,获得积分10
5秒前
MGQQbg完成签到,获得积分10
5秒前
5秒前
细心书包完成签到,获得积分10
6秒前
lishi完成签到,获得积分10
8秒前
ya完成签到,获得积分10
8秒前
9秒前
乐乐完成签到,获得积分10
9秒前
11秒前
Jue发布了新的文献求助10
11秒前
美丽的果汁完成签到 ,获得积分10
11秒前
舒婷完成签到 ,获得积分10
13秒前
13秒前
zjrh发布了新的文献求助10
13秒前
xueluxin完成签到 ,获得积分10
15秒前
李健应助绿色心情采纳,获得10
16秒前
16秒前
本恩宁完成签到 ,获得积分10
19秒前
19秒前
22秒前
kgrvlm完成签到 ,获得积分10
23秒前
Lucas应助halo采纳,获得10
23秒前
24秒前
华仔应助yy采纳,获得10
24秒前
张一完成签到 ,获得积分10
25秒前
zjrh完成签到,获得积分10
26秒前
白桃战士发布了新的文献求助10
27秒前
lxy发布了新的文献求助10
28秒前
28秒前
28秒前
28秒前
少侠饶命完成签到 ,获得积分10
30秒前
陈磨磨磨完成签到,获得积分10
32秒前
考前刷夜完成签到,获得积分10
32秒前
32秒前
深情安青应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
Hello应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898