Deep Insight of the Mechanism for Nitrate-Promoted PFASs Defluorination in UV/Sulfite ARP: Activation of the Decarboxylation–Hydroxylation–Elimination–Hydrolysis Degradation Pathway

化学 羟基化 亚硫酸盐 脱羧 降级(电信) 硝酸盐 环境化学 水解 光化学 无机化学 有机化学 催化作用 计算机科学 电信
作者
Zhuoran Feng,Yili Fu,Jiahui Li,Xiangni Lu,Shuo Wang,Yidi Chen,Wei Wang,Zhiqiang Sun,Jun Ma
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c14559
摘要

The UV/sulfite advanced reduction process (ARP) holds promise for the removal of per- and polyfluoroalkyl substances (PFASs) by a hydrated electron (eaq-)-induced H/F exchange process under anoxic conditions. Traditionally, the presence of coexisting nitrate in water has always been regarded as a major inhibitory factor for PFASs defluorination. However, this study observed an unexpected promotive effect of nitrate on defluorination, challenging the previous phenomenon. Notably, the addition of 100 μM nitrate resulted in a remarkable 54% enhancement in PFOA defluorination. A novel mechanism was discovered that nitrate-derived reactive nitrogen species (RNS) activated the decarboxylation-hydroxylation-elimination-hydrolysis (DHEH) process, an important degradation pathway for PFASs in UV/sulfite ARP. Induced by eaq-, the PFAS molecule first became a perfluorinated radical and then was transformed into unstable perfluorinated alcohol by reacting with water. Due to the high reactivity driven by unpaired electrons of RNS, water molecules were destabilized with the H-O bond stretched from 0.98 to 1.04 Å. This effectively enhanced the spontaneity of the reaction between perfluorinated radical and water molecules and consequently made the whole DHEH process more thermodynamic favorable (ΔG, -23.53 → -376.28 kJ/mol). Such a process breaks through the view that the nitrate directly reacts with eaq- to affect PFASs defluorination in ARP systems. This finding offers an innovative perspective for optimizing PFAS defluorination by strategically regulating nitrate levels in water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Will完成签到,获得积分10
刚刚
ScholarZmm完成签到,获得积分10
1秒前
1秒前
2秒前
renlangfen完成签到,获得积分10
2秒前
Silver发布了新的文献求助30
3秒前
东东发布了新的文献求助10
3秒前
半胖完成签到,获得积分10
3秒前
研友_Zzrx6Z完成签到,获得积分10
3秒前
炙热萝完成签到,获得积分10
3秒前
3秒前
吕玥函发布了新的文献求助10
4秒前
4秒前
nandeyijia完成签到,获得积分10
5秒前
乐乐乐乐乐乐应助Dwightbobo采纳,获得10
5秒前
Zerolii完成签到,获得积分10
6秒前
LiuShenglan完成签到,获得积分0
7秒前
大模型应助wd采纳,获得10
7秒前
7秒前
DRDOC发布了新的文献求助10
7秒前
8秒前
8秒前
Shawn完成签到,获得积分10
9秒前
bkagyin应助goinggo采纳,获得10
9秒前
晴乐令完成签到,获得积分10
9秒前
滑稽完成签到,获得积分20
9秒前
李欢发布了新的文献求助10
9秒前
11秒前
Silver完成签到,获得积分10
12秒前
12秒前
文艺小馒头完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
现代的东蒽完成签到,获得积分10
15秒前
彭于晏应助taozjju采纳,获得10
15秒前
飘逸的海云完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4113126
求助须知:如何正确求助?哪些是违规求助? 3651582
关于积分的说明 11562720
捐赠科研通 3355862
什么是DOI,文献DOI怎么找? 1843463
邀请新用户注册赠送积分活动 909468
科研通“疑难数据库(出版商)”最低求助积分说明 826276